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What is reduction and why do we study reduction

Definition

Reduction is a binary operator ~ that applies to each element of an input
vector V and reduces V to a single value r . Formally,
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where the subscript iterates between n vectors and the (parenthesized)
superscript between d dimensions of a vector v .

Reduction is involved in less compute-intensive operators (e.g.,
SoftMax, ReLU, BachNorm) of neural network models.

Ineffective parallelization of reductions can hamper the performance of
such operators, which can in turn result in sub-optimal performance.

Optimizing reduction is thus important for parallelizing neural
network models but not well studied before.
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Why do we target GPU

4 1 6 3 2 5 7 1
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29

parallel execution of a reduction 29 = (((((((4 + 1) + 6) + 3) + 2) + 5) + 7) + 1)

Parallelism in reduction makes GPU an attractive and suitable target.
GPU abstracts the streaming multiprocessors as blocks and CUDA
cores as threads. The number of threads within a block is limited.
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Limitations of prior work on parallel reduction
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sequential addressing

Parallel Reductions on GPU

Harris revealed many optimization useful for library-based methods
Elements can be dispatched to multiple threads, but have to be
decomposed into multiple blocks when the number of elements grows
Non-trivial due to the missing of synchronization across blocks
Incompatible with loop transformations, e.g., fusion, coalescing

Polyhedral Parallel Reductions

Polyhedral compilation easily composes loop transformations
Wastes GPU resources when handling multiple, small reduction dims
Ineffective handling of global synchronization through privatization
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Architecture of Panamera

Tensor
Expressions

Apollo

Dimension
Flattening

Polyhedral
Transformations
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CUDA
Kernel

PyTorchTensorFlow CNTK MindSpore · · ·

scheduling fusion tiling binding mark

Takes as input a sub-graph generated by our graph engine Apollo[1]

,
supporting various deep learning frameworks

Built on top of our polyhedral tensor compiler AKG

, automatically
managing loop transformations and hardware binding

Wraps self-developed, high-performance libraries

, fully utilizing
low-level hardware instructions

[1]Jie Zhao et al. “Apollo: Automatic Partition-based Operator Fusion through Layer by Layer Optimization”. Vol. 4.
MLSys’22. 2022, pp. 1–19.
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Flattening multiple dimensions through loop coalescing

Nested reductions over multiple variables are frequent

Calls for loop coalescing to flatten the small reduction dims

r1

r2

r3

r4

(a)

r1

p2

r3

r4

(b)

r1

r2

p3

p4

(c)

p1

r2

p3

r4

(d)

(a) Reductions over all loop dimensions; (b) and (c) Both the (red) parallel dimensions
and the (blue) reduced dimensions are continuous; (d) The parallel dimensions and the
reduced dimensions are interleaved.

(a) can be flattened into all-reduce

; (b) and (c) can be flattened into
x- and y -reduce

; (d) needs loop interchange

(always valid)

reduced for j=0 to N

R(j1, · · · , jr );

all-reduce.

parallel for i=0 to M

reduced for j=0 to N

R(i1, · · · , ip , j1, · · · , jr );

x-reduce.

reduced for j=0 to N

parallel for i=0 to M

R(j1, · · · , jr , i1, · · · , ip);

y-reduce.
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Flattening multiple dimensions through loop coalescing

Transformation formula of tensor indexes

M =
p∏

x=1
sx = s1 × · · · × sp,N =

r∏
y=1

ty = t1 × · · · × tr ;

ia =

⌊
i

/
p∏

x=a+1
sx

⌋
mod sa : (1 ≤ a < p), ip = i mod sp;

jb =

⌊
j

/
r∏

y=b+1

ty

⌋
mod tb : (1 ≤ b < r), jr = j mod tr ;

At most one sx and one ty can be symbolic constants, making the
flattend dimensions amenable to polyhedral complication

An example of dimension flattening
for h=0 to 40

for w=0 to 20

for x=0 to 10

for y=0 to 5

E(h,w,x,y);

for h=0 to 40

for w=0 to 20

for x=0 to 10

for y=0 to 5

R(h,w,x,y);

for h=0 to 40

for w=0 to 20

for x=0 to 10

for y=0 to 5

E(h,w,x,y);

for i=0 to 20

for j=0 to 40*10*5

R(i,(j/(10*5))%40,(j/5)%10,j%5);
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Propagating reduction dependences to enable fusion

Loop coalescing invalidates the originally possible fusion

p1

p2

r3

r4

e1

e2

e3

e4

· · ·

e1

e2

e3

e4

m elmwise ops

Propagate the dependences along the reduced dims
for h=0 to 40

for w=0 to 20

for x=0 to 10

for y=0 to 5

E(h,w,x,y);

for h=0 to 40

for w=0 to 20

for x=0 to 10

for y=0 to 5

R(h,w,x,y);

for h=0 to 40

for w=0 to 20

for x=0 to 10

for y=0 to 5

E(h,w,x,y);

for i=0 to 20

for j=0 to 40*10*5

R(i,(j/(10*5))%40,(j/5)%10,j%5);

parallel for i=0 to 20

parallel for j=0 to 40*10*5

E(i,(j/(10*5))%40,(j/5)%10,j%5);

parallel for i=0 to 20

reduced for j=0 to 40*10*5

R(i,(j/(10*5))%40,(j/5)%10,j%5);

Recover the fusion possibility

Fusion with follow-up elementwise operators is handled by Apollo
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Recover the fusion possibility

Fusion with follow-up elementwise operators is handled by Apollo[1]

[1]Jie Zhao et al. “Apollo: Automatic Partition-based Operator Fusion through Layer by Layer Optimization”. Vol. 4.
MLSys’22. 2022, pp. 1–19.
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Polyhedral loop fusion

Transformation formula of tensor indexes guarantees the “static affine
control” requirement of polyhedral compilation

Polyhedral loop fusion is the default heuristic of isl , reinforced by the
post-tiling fusion strategy embedded in AKG when necessary

Always guarantee outer parallelism (possibly by converting a y -reduce
into an x-reduce pattern)

bind a parallel loop to outer GPU block dims and a reduced loop to
inner
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Tiling and binding reduced dimensions

Tiling is performed on top of a fusion configuration
/* Tile sizes are 32 × 4. */

parallel for ib=0 to M/32

reduced for jb=0 to N/4

parallel for it=0 to 32

reduced for jt=0 to 4

m elmwise stmts;

// marked reduce stmt

R(i1, · · · , ip , j1, · · · , jr );

The tiled code.

ib

jb

it

jt

blockIdx.y

blockIdx.x

threadIdx.y

threadIdx.x

Hardware binding.

The outer parallel loops can be bound safely

The inner reduced loops are bound by ignoring reduction dependences

This enables the possibility to decompose a reduction operator across
multiple blocks when handling large reduction dimensions

Ignored dependences will be resumed during code generation
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Orchestration effects of loop transformations

Loop coalescing is an achievable but undesired transformation in
polyhedral compilation[1], we isolates it as a preprocessing step in
dimension flattening.

This isolation can mitigate the polyhedral scheduling overhead,
allowing us to optimize reductions with a reasonable cost.

Loop interchange before the polyhedral transformations can be
harmful to memory coalescing; we avoid this risk by reasoning about
tensor layouts using tensor expression language.

Isolating loop coalescing also makes it possible to canonicalize
reduction patterns, as shown before.

Our three canonical reduction forms simplify hardware binding
strategies and compress the search space of tile sizes.

[1]Sven Verdoolaege et al. “Scheduling for PPCG”. Report CW 706 (2017).
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A self-developed library using atomic instructions

4 1 6 3 2 5 7 1 2 3 6 1 8 3 7 4

t0 t1 t2 t3 t0 t1 t2 t3

6 6 13 4 10 6 13 5

library library

29 34

atomic instruction

63 grid

block0 block1 data on global memory

data on shared memory

data in registers

single-block
library

Part 1

Part 2

Part 3

Part 1 enables sequential addressing and fusion with other operators

Part 2 ensures higher performance than stand-alone compilation
approaches and minimizes the number of involved blocks

Part 3 carries out global synchronization using atomic instructions,
avoiding the need to invoke multiple kernels for neural network models
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[1]Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”. OSDI 2018, pp. 578–594.
[2]Jie Zhao et al. “AKG: Automatic Kernel Generation for Neural Processing Units Using Polyhedral Transformations”. PLDI

2021, pp. 1233–1248.
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Example templated code

__global__ void reduce(int len, T *input, T *output, int num, OP op){

T local_sum=0;

__shared__ T shared_buf[4];

__shared__ T block_sum[1];

/* Part 1, automatically generated using polyhedral compilation. */

for(int k=0; k< num; k++)

if(threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*num<len)

op(local_sum,input[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*num]);

__synchthreads();

/* Part 2, automatic invocation of library routines. */

Parallel_Reduce<T,OP,4,all>(op,&block_sum[0],shared_buf,local_sum);
__synchthreads();

/* Part 3, automatic global sychronization using atomics. */

if(threadIdx.x==0)

Atomic_Return<T,OP>(block_sum[0],&output[0],op);

}

OP can be instanced using summation, product, min, max, logical
AND and logical OR

T can be one of double, float32, float16, bool, long long int and int

Parallel Reduce and Atomic Return are interfaces to our library and
low-level atomic instructions

synchthreads() is automatically inserted
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Example templated code
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Generalizing the templated code generator

Handling an irregular input size n

Divide n into 2k (greatest power of two less than n) and n − 2k

Perform a local reduction to convert n into an irregular size 2k

Designed for Part 2 , this optimization is also useful for irregular sizes
across multiple blocks

Generalization to multiple reductions

Still fusible when their enclosing loop nests are identical and reductions
patterns are the same
More complicated scenarios can be feedback to the upstream graph
compiler for exploiting more fusion opportunities
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[1]Jie Zhao et al. “Apollo: Automatic Partition-based Operator Fusion through Layer by Layer Optimization”. Vol. 4.
MLSys’22. 2022, pp. 1–19.
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Example code for fused reductions
__global__ void reduce(float *input0, float *input1, float *input2, float *output0, float *output1){

float local_sum=0; float local_max=-3.40282e+38f;

__shared__ float shared_buf[128]; __shared__ float block_sum[1];

__shared__ float block_max[1];

/* Fuse the addition operator with reduce_sum. */

for(int k=0; k< 8; k++)

if(threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*8<1024){

float agg_local = input0[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*8]

+ input1[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*8];

Sum(local_sum, agg_local);

}

__synchthreads();

Parallel_Reduce<float,Sum,128,all>(Sum,&block_sum[0],shared_buf,local_sum);
__synchthreads();

if(threadIdx.x==0)

output0[0] = block_sum[0];

__synchthreads();

/* Fuse two reductions through identical hardware configuration. */

for(int k=0; k< 17; k++)

if(threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*17 < 2176)

Max(local_max, input2[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*17]);

__synchthreads();

Parallel_Reduce<float,Max,128,all>(Max,&block_max[0],shared_buf,local_max);
__synchthreads();

if(threadIdx.x==0)

output1[0] = block_max[0];

}

Fusing one addition and two reductions. It first sums input0 and input1, both
of which are 1D tensors of size 1024, and outputs output0 through a reduce sum.
Another 1D tensor input2 of size 2176 is reduced (reduced max) to output1.
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Experimental setups

Hardware NIVDIA Tesla V100 GPU

Operating system
Ubuntu 16.04.4 LTS (GNU/Linux

4.4.0-116-generic x86 64)

CUDA toolkit version 10.1, -O3 option

Python version 3.7.5

Neural network framework MindSpore[1], version 1.8.1

Baselines
AKG[2], TVM (v0.6)[3], Ansor[4],

cuDNN (v7.6.4) and CUB (v1.8)[5]

Reported time Geometric mean of 10 executions

[1]Huawei. MindSpore. 2020. url: https://www.mindspore.cn/en.
[2]Jie Zhao et al. “AKG: Automatic Kernel Generation for Neural Processing Units Using Polyhedral Transformations”. PLDI

2021, pp. 1233–1248.
[3]Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”. OSDI 2018, pp. 578–594.
[4]Lianmin Zheng et al. “Ansor: Generating High-Performance Tensor Programs for Deep Learning”. OSDI 2020, pp. 863–879.
[5]Nvidia. CUB Documentation. 2018. url: https://nvlabs.github.io/cub/.
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Results of single operators

3 operators: reduce sum, reduce max and reduce and

4 data types: float32, float16, int and bool

10 different input shape configurations (reduce sum x axis: original
shapes; reduce max x axis: flattened shapes)

y axis: log scaled execution time in microseconds; lower is better

Please refer to the paper for the result of reduce and
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Results of single operators

TVM performs poorly under larger sizes, especially for all-reduce

Ansor sometimes quits when handling y-reduce

cuDNN may not perform loop coalescing and always uses an identical
3D thread configuration << 8, 16, 1 >>

CUB seems more suitable for reductions along the inner loops

Panamera outperforms cuDNN, CUB, TVM and Ansor by 33.7×,
3.5×, 5.4× and 9.6×, respectively
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Results of fused operators

Summary of fused operators. cast16 converts an f32 tensor into f16 and cast32
performs the reverse process; r sum represents the reduce sum operator.

no. input config. op1 op2 op3 op4 op5 op6

1 f32 [64,2] cast16 cast32 cast16 r sum - -
2 f32 [1280,21128] cast16 r sum - - - -
3 f16 [64,768] cast32 r sum - - - -
4 f32 [1280,21128] mul r sum - - - -
5 f32 [1280] neg mul r sum - - -
6 f32 [3072] mul mul r sum - - -
7 f32 [64,128,768] add mul sum - - -
8 f32 [64,128,768] add mul r sum add mul r sum
9 f32 [8192,768] r sum r sum - - - -

10 f16 [64,128,12,64] reshape cast32 r sum - - -
11 f16 [64,128,768] reshape cast32 r sum - - -
12 f16 [64,20] reshape r sum - - - -
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Results of fused operators

sub-graph1

sub-graph2

sub-graph3

sub-graph4

sub-graph5

sub-graph6

sub-graph7

sub-graph8

sub-graph9

sub-graph10

sub-graph11

sub-graph12
100
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103

cuDNN TVM Ansor Panamera w/o fusion Panamera

y axis: log scaled execution time in microseconds; lower is better.

While not exploiting fusion, cuDNN does not support type casting or
reshaping operators

; Panamera exhibits a better scalablity by
handling more scenarios

TVM/Ansor under-performs when multi-block parallelism is essential
for performance

; Panamera can better handle the multi-block
parallelism

On average, Panamera outperforms cuDNN, TVM and Ansor by
9.5×, 2.6× and 2.7×, respectively
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Results of end-to-end workloads

Execution time in milliseconds (GPT-3 is executed on a Tesla A100 GPU)

Workloads MindSpore TVM Ansor AKG Panamera
Improvement over number of

fused opsMindSpore TVM Ansor AKG

BERT[1] 352.2 138.0 120.3 124.0 111.0 +217% +24% +8% +12% 304

Wide&Deep[2] 22.4 12.5 12.8 12.6 11.0 +104% +14% +16% +15% 74

VGG-16[3] 70.4 65.7 66.3 67.6 64.2 +10% +2% +3% +5% 39

MobileNet-v3[4] 151.4 133.0 129.4 136.8 131.5 +15% +1% -2% +4% 52

Transformer[5] 157.8 132.4 126.5 136.8 79.2 +99% +67% +60% +73% 746

GPT-3[6] 483.0 133.9 131.3 146.2 123.7 +290% +8% +6% +18% 409
average +122.5% +19.3% +15.2% +21.2%

number of operators fused by Panamera in a workload

Panamera enhances the performance of AKG by 21.2% on average

AKG + Panamera outperforms MindSpore (backed by CUDA
libraries), TVM and Ansor by 122.5%, 19.3% and 15.2%, respectively

[1]Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”. NAACL 2019,
Volumn 1, pp. 4171–4186.

[2]Heng-Tze Cheng et al. “Wide & Deep Learning for Recommender Systems”. DLRS 2016, pp. 7–10.
[3]Karen Simonyan et al. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014. arXiv: 1409.1556

[cs.CV].
[4]Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017. arXiv:

1704.04861 [cs.CV].
[5]Ashish Vaswani et al. “Attention is All You Need”. NIPS’17, pp. 6000–6010.
[6]Tom Brown et al. “Language Models are Few-Shot Learners”. NeurIPS 2020, pp. 1877–1901.
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Summary of the contributions

Panamera canonicalizes reductions in DL not considered before,
making it possible to effectively decompose various reductions and
fully harness GPU hardware resources.

Panamera implements a good orchestration of loop transformations
for reductions, avoiding the need to introduce complex constraints in
polyhedral schedulers and decreasing the tuning space size of DL
reductions.

Panamera exhibits a much better scalability to data types and
tensor shapes than many CUDA libraries, rendering a compiler
applicable to various reduction scenarios.

Panamera enables fusion of independent reductions, further
improving the fusion possibilities and validating that there still exists
space for optimizing reductions.
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Potentials and limitations

+ No threshold on the number of fused operators, which is only
determined according to the available hardware resources

+ x- and y -reduce patterns can be executed on multiple GPUs, with
parallel for loops decomposed evenly across devices

+ Applicable to matrix multiplication but not encouraged

Performance comparison of matrix multiplication when optimized using Panamera and tensor cores in AKG. Execution
time is in microseconds.

MNK shape K-dim config Panamera tensor cores matching percent
128 × 32 × 64 2 blocks 24.044 4.381 18.22%

128 × 32 × 1024 16 blocks 21.378 57.882 270.75%
1024 × 512 × 1024 16 blocks 183.18 78.623 42.92%

- non-determinism issue of atomic instructions

; the hardware scheme
for deterministic atomic buffering is a solution

- (slight) manual effort required to configure templated routines in the
generated code

; fully automation is under construction

Conclusion Discussion October 12, Chicago, Illinois 22 / 23
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- non-determinism issue of atomic instructions

; the hardware scheme
for deterministic atomic buffering is a solution

- (slight) manual effort required to configure templated routines in the
generated code

; fully automation is under construction
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Potentials and limitations

+ No threshold on the number of fused operators, which is only
determined according to the available hardware resources

+ x- and y -reduce patterns can be executed on multiple GPUs, with
parallel for loops decomposed evenly across devices

+ Applicable to matrix multiplication but not encouraged

Performance comparison of matrix multiplication when optimized using Panamera and tensor cores in AKG. Execution
time is in microseconds.

MNK shape K-dim config Panamera tensor cores matching percent
128 × 32 × 64 2 blocks 24.044 4.381 18.22%

128 × 32 × 1024 16 blocks 21.378 57.882 270.75%
1024 × 512 × 1024 16 blocks 183.18 78.623 42.92%

- non-determinism issue of atomic instructions; the hardware scheme
for deterministic atomic buffering[1] is a solution

- (slight) manual effort required to configure templated routines in the
generated code; fully automation is under construction

[1]Yuan Hsi Chou et al. “Deterministic Atomic Buffering”. MICRO 2020, pp. 981–995.
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