
Effectively Scheduling Computational Graphs of Deep
Neural Networks toward Their Domain-Specific

Accelerators

Jie Zhao1 Siyuan Feng2 Xiaoqiang Dan3

Fei Liu3 Chengke Wang3 Sheng Yuan3 Wenyuan Lv3 Qikai Xie3

1Information Engineering University, Zhengzhou
2Shanghai Jiao Tong University, Shanghai

3Stream Computing Inc., Hangzhou

The 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI’23)

July 12, 2023, Boston, MA, USA

July 12, 2023, Boston, MA, USA 1 / 21

Outline

1 Introduction

2 Overview

3 Schedule Sub-graph Instances

4 Generate Kernels for Sub-graph Instances

5 Experimental Results

6 Conclusion

July 12, 2023, Boston, MA, USA 2 / 21

A Deep Neural Network (DNN) DSA Abstraction

Moore’s Law ↓ Domain-specific Architecture (DSA) ↑

A DSA Abstraction has formed after several years of investigations

Goya

d ← 1; c ← 9; u ← 1
LB ← Local Memory or N/A
GB ← Shared Memory
CU1 ← GEMM engine/TPC

Ascend

d ← 1; c ← 8; u ← 3
LB ← Unified/L1 Buffer
GB ← on-chip Buffer
CU1 ← scalar unit
CU2 ← vector unit
CU3 ← cube unit

IPU

d ← 2; c ← 1216; u ← 1
LB ← Local Memory
GB ← N/A
CU1 ← core

Scheduling DNNs for this DSA abstraction is thus important!

But existing approaches cannot fully exploit its computing power...

Introduction DSA Abstraction July 12, 2023, Boston, MA, USA 3 / 21

A Deep Neural Network (DNN) DSA Abstraction

Moore’s Law ↓ Domain-specific Architecture (DSA) ↑
A DSA Abstraction has formed after several years of investigations

Goya

d ← 1; c ← 9; u ← 1
LB ← Local Memory or N/A
GB ← Shared Memory
CU1 ← GEMM engine/TPC

Ascend

d ← 1; c ← 8; u ← 3
LB ← Unified/L1 Buffer
GB ← on-chip Buffer
CU1 ← scalar unit
CU2 ← vector unit
CU3 ← cube unit

IPU

d ← 2; c ← 1216; u ← 1
LB ← Local Memory
GB ← N/A
CU1 ← core

Scheduling DNNs for this DSA abstraction is thus important!

But existing approaches cannot fully exploit its computing power...

Introduction DSA Abstraction July 12, 2023, Boston, MA, USA 3 / 21

A Deep Neural Network (DNN) DSA Abstraction

Moore’s Law ↓ Domain-specific Architecture (DSA) ↑
A DSA Abstraction has formed after several years of investigations

Goya

d ← 1; c ← 9; u ← 1
LB ← Local Memory or N/A
GB ← Shared Memory
CU1 ← GEMM engine/TPC

Ascend

d ← 1; c ← 8; u ← 3
LB ← Unified/L1 Buffer
GB ← on-chip Buffer
CU1 ← scalar unit
CU2 ← vector unit
CU3 ← cube unit

IPU

d ← 2; c ← 1216; u ← 1
LB ← Local Memory
GB ← N/A
CU1 ← core

Scheduling DNNs for this DSA abstraction is thus important!

But existing approaches cannot fully exploit its computing power...

Introduction DSA Abstraction July 12, 2023, Boston, MA, USA 3 / 21

A Deep Neural Network (DNN) DSA Abstraction

Moore’s Law ↓ Domain-specific Architecture (DSA) ↑
A DSA Abstraction has formed after several years of investigations

Goya

d ← 1; c ← 9; u ← 1
LB ← Local Memory or N/A
GB ← Shared Memory
CU1 ← GEMM engine/TPC

Ascend

d ← 1; c ← 8; u ← 3
LB ← Unified/L1 Buffer
GB ← on-chip Buffer
CU1 ← scalar unit
CU2 ← vector unit
CU3 ← cube unit

IPU

d ← 2; c ← 1216; u ← 1
LB ← Local Memory
GB ← N/A
CU1 ← core

Scheduling DNNs for this DSA abstraction is thus important!

But existing approaches cannot fully exploit its computing power...

Introduction DSA Abstraction July 12, 2023, Boston, MA, USA 3 / 21

A Deep Neural Network (DNN) DSA Abstraction

Moore’s Law ↓ Domain-specific Architecture (DSA) ↑
A DSA Abstraction has formed after several years of investigations

Goya

d ← 1; c ← 9; u ← 1
LB ← Local Memory or N/A
GB ← Shared Memory
CU1 ← GEMM engine/TPC

Ascend

d ← 1; c ← 8; u ← 3
LB ← Unified/L1 Buffer
GB ← on-chip Buffer
CU1 ← scalar unit
CU2 ← vector unit
CU3 ← cube unit

IPU

d ← 2; c ← 1216; u ← 1
LB ← Local Memory
GB ← N/A
CU1 ← core

Scheduling DNNs for this DSA abstraction is thus important!

But existing approaches cannot fully exploit its computing power...

Introduction DSA Abstraction July 12, 2023, Boston, MA, USA 3 / 21

Limitations of Prior Work

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Prior work groups nodes by obscuring hardware architectures,
producing more kernels and requiring more in-between, off-core data
movements;

Grouping nodes within a layer generates fine-grained sub-graphs,
missing the across-layer instruction scheduling opportunities;

Prior work did not expose/exploit the imbalanced memory usage
distribution , under-utilizing the faster local memory.

Introduction Limitations of Prior Work July 12, 2023, Boston, MA, USA 4 / 21

Limitations of Prior Work

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Prior work groups nodes by obscuring hardware architectures,
producing more kernels and requiring more in-between, off-core data
movements;

Grouping nodes within a layer generates fine-grained sub-graphs,
missing the across-layer instruction scheduling opportunities;

Prior work did not expose/exploit the imbalanced memory usage
distribution , under-utilizing the faster local memory.

Introduction Limitations of Prior Work July 12, 2023, Boston, MA, USA 4 / 21

Limitations of Prior Work

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Prior work groups nodes by obscuring hardware architectures,
producing more kernels and requiring more in-between, off-core data
movements;

Grouping nodes within a layer generates fine-grained sub-graphs,
missing the across-layer instruction scheduling opportunities;

Prior work did not expose/exploit the imbalanced memory usage
distribution , under-utilizing the faster local memory.

Introduction Limitations of Prior Work July 12, 2023, Boston, MA, USA 4 / 21

Limitations of Prior Work

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Prior work groups nodes by obscuring hardware architectures,
producing more kernels and requiring more in-between, off-core data
movements;

Grouping nodes within a layer generates fine-grained sub-graphs,
missing the across-layer instruction scheduling opportunities;

Prior work did not expose/exploit the imbalanced memory usage
distribution[1], under-utilizing the faster local memory.

[1]Ji Lin et al. “Memory-efficient Patch-based Inference for Tiny Deep Learning”. NeurIPS. vol. 34. 2021, pp. 1–13.

Introduction Limitations of Prior Work July 12, 2023, Boston, MA, USA 4 / 21

Our Solution

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Construct coarser-grained sub-graphs, generating larger kernels and
coverting data movements from off-core to on-core;

Sub-graphs should cover layers or blocks, better hiding memory
latency and exploiting the parallelism across CUs;

Consider the internal relations between coarser-grained sub-graphs,
better utilizing the faster local memory.

These solutions form our new scheduler for DSA – GraphTurbo.

Introduction Our Solution July 12, 2023, Boston, MA, USA 5 / 21

Our Solution

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Construct coarser-grained sub-graphs, generating larger kernels and
coverting data movements from off-core to on-core;

Sub-graphs should cover layers or blocks, better hiding memory
latency and exploiting the parallelism across CUs;

Consider the internal relations between coarser-grained sub-graphs,
better utilizing the faster local memory.

These solutions form our new scheduler for DSA – GraphTurbo.

Introduction Our Solution July 12, 2023, Boston, MA, USA 5 / 21

Our Solution

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Construct coarser-grained sub-graphs, generating larger kernels and
coverting data movements from off-core to on-core;

Sub-graphs should cover layers or blocks, better hiding memory
latency and exploiting the parallelism across CUs;

Consider the internal relations between coarser-grained sub-graphs,
better utilizing the faster local memory.

These solutions form our new scheduler for DSA – GraphTurbo.

Introduction Our Solution July 12, 2023, Boston, MA, USA 5 / 21

Our Solution

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Construct coarser-grained sub-graphs, generating larger kernels and
coverting data movements from off-core to on-core;

Sub-graphs should cover layers or blocks, better hiding memory
latency and exploiting the parallelism across CUs;

Consider the internal relations between coarser-grained sub-graphs,
better utilizing the faster local memory.

These solutions form our new scheduler for DSA – GraphTurbo.

Introduction Our Solution July 12, 2023, Boston, MA, USA 5 / 21

Our Solution

layer: nodes connected in a
straight line, with at most one
containing parameters learner
using gradients of loss.

block: a layer or a group of
layers used recursively

stage: a logical, high-level
abstraction used in a
computational graph

Construct coarser-grained sub-graphs, generating larger kernels and
coverting data movements from off-core to on-core;

Sub-graphs should cover layers or blocks, better hiding memory
latency and exploiting the parallelism across CUs;

Consider the internal relations between coarser-grained sub-graphs,
better utilizing the faster local memory.

These solutions form our new scheduler for DSA – GraphTurbo.

Introduction Our Solution July 12, 2023, Boston, MA, USA 5 / 21

Core Idea of GraphTurbo

maximally preserve the input tensors in LB to convert as many
off-core data movements as possible into on-core data exchanges.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

151515151515151515

tensor used to store a batch of images LB of the DSA abstraction

images processed by the stage with the same color

Each cluster processes 8 images; each stage reduces an image by half.

Construct larger sub-graph for each stage.

Split each sub-graph into 8, 4, 2, and 1 instance(s), respectively.

Schedule sub-graph instances in this order.

Saturate LB while exploiting the parallelism across cores.

Overview Core Idea of GraphTurbo July 12, 2023, Boston, MA, USA 6 / 21

Core Idea of GraphTurbo

maximally preserve the input tensors in LB to convert as many
off-core data movements as possible into on-core data exchanges.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

151515151515151515

tensor used to store a batch of images LB of the DSA abstraction

images processed by the stage with the same color

Each cluster processes 8 images; each stage reduces an image by half.

Construct larger sub-graph for each stage.

Split each sub-graph into 8, 4, 2, and 1 instance(s), respectively.

Schedule sub-graph instances in this order.

Saturate LB while exploiting the parallelism across cores.

Overview Core Idea of GraphTurbo July 12, 2023, Boston, MA, USA 6 / 21

Core Idea of GraphTurbo

maximally preserve the input tensors in LB to convert as many
off-core data movements as possible into on-core data exchanges.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

151515151515151515

tensor used to store a batch of images LB of the DSA abstraction

images processed by the stage with the same color

Each cluster processes 8 images; each stage reduces an image by half.

Construct larger sub-graph for each stage.

Split each sub-graph into 8, 4, 2, and 1 instance(s), respectively.

Schedule sub-graph instances in this order.

Saturate LB while exploiting the parallelism across cores.

Overview Core Idea of GraphTurbo July 12, 2023, Boston, MA, USA 6 / 21

Core Idea of GraphTurbo

maximally preserve the input tensors in LB to convert as many
off-core data movements as possible into on-core data exchanges.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

151515151515151515

tensor used to store a batch of images LB of the DSA abstraction

images processed by the stage with the same color

Each cluster processes 8 images; each stage reduces an image by half.

Construct larger sub-graph for each stage.

Split each sub-graph into 8, 4, 2, and 1 instance(s), respectively.

Schedule sub-graph instances in this order.

Saturate LB while exploiting the parallelism across cores.

Overview Core Idea of GraphTurbo July 12, 2023, Boston, MA, USA 6 / 21

Core Idea of GraphTurbo

maximally preserve the input tensors in LB to convert as many
off-core data movements as possible into on-core data exchanges.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

151515151515151515

tensor used to store a batch of images LB of the DSA abstraction

images processed by the stage with the same color

Each cluster processes 8 images; each stage reduces an image by half.

Construct larger sub-graph for each stage.

Split each sub-graph into 8, 4, 2, and 1 instance(s), respectively.

Schedule sub-graph instances in this order.

Saturate LB while exploiting the parallelism across cores.

Overview Core Idea of GraphTurbo July 12, 2023, Boston, MA, USA 6 / 21

Core Idea of GraphTurbo

maximally preserve the input tensors in LB to convert as many
off-core data movements as possible into on-core data exchanges.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

151515151515151515

tensor used to store a batch of images LB of the DSA abstraction

images processed by the stage with the same color

Each cluster processes 8 images; each stage reduces an image by half.

Construct larger sub-graph for each stage.

Split each sub-graph into 8, 4, 2, and 1 instance(s), respectively.

Schedule sub-graph instances in this order.

Saturate LB while exploiting the parallelism across cores.

Overview Core Idea of GraphTurbo July 12, 2023, Boston, MA, USA 6 / 21

Collect Splitting Information

Collect hardware information for constructing larger sub-graphs.
SplitInfo includes split loop dimension, factor, etc.
Each sub-graph SG is initialized by an op.
Each op include only one output tensor and multiple input tensors.
Compute SplitInfo for the output and propagate it to inputs.
Define three metrics, and use

lexmax∀d∈SplitInfo (nd ,−fd ,−d)

to select the a loop dimension of a tensor to be split.

Schedule Sub-graph Instances Collect Splitting Information July 12, 2023, Boston, MA, USA 7 / 21

Collect Splitting Information

Collect hardware information for constructing larger sub-graphs.
SplitInfo includes split loop dimension, factor, etc.

Each sub-graph SG is initialized by an op.
Each op include only one output tensor and multiple input tensors.
Compute SplitInfo for the output and propagate it to inputs.
Define three metrics, and use

lexmax∀d∈SplitInfo (nd ,−fd ,−d)

to select the a loop dimension of a tensor to be split.

Schedule Sub-graph Instances Collect Splitting Information July 12, 2023, Boston, MA, USA 7 / 21

Collect Splitting Information

Collect hardware information for constructing larger sub-graphs.
SplitInfo includes split loop dimension, factor, etc.
Each sub-graph SG is initialized by an op.
Each op include only one output tensor and multiple input tensors.

Compute SplitInfo for the output and propagate it to inputs.
Define three metrics, and use

lexmax∀d∈SplitInfo (nd ,−fd ,−d)

to select the a loop dimension of a tensor to be split.

Schedule Sub-graph Instances Collect Splitting Information July 12, 2023, Boston, MA, USA 7 / 21

Collect Splitting Information

Collect hardware information for constructing larger sub-graphs.
SplitInfo includes split loop dimension, factor, etc.
Each sub-graph SG is initialized by an op.
Each op include only one output tensor and multiple input tensors.
Compute SplitInfo for the output and propagate it to inputs.

Define three metrics, and use

lexmax∀d∈SplitInfo (nd ,−fd ,−d)

to select the a loop dimension of a tensor to be split.

Schedule Sub-graph Instances Collect Splitting Information July 12, 2023, Boston, MA, USA 7 / 21

Collect Splitting Information

Collect hardware information for constructing larger sub-graphs.
SplitInfo includes split loop dimension, factor, etc.
Each sub-graph SG is initialized by an op.
Each op include only one output tensor and multiple input tensors.
Compute SplitInfo for the output and propagate it to inputs.
Define three metrics, and use

lexmax∀d∈SplitInfo (nd ,−fd ,−d)

to select the a loop dimension of a tensor to be split.
Schedule Sub-graph Instances Collect Splitting Information July 12, 2023, Boston, MA, USA 7 / 21

Group Sub-graphs with the aid of SplitInfo

Sort a graph G in a topological order, each node denoting an SG .
Group SG by repeatedly considering three patterns

SG1

SG2

Straight.

SG1

SG2 SG3

SG4

Diamond.

SG1

SG2

SG3

Branch.

Schedule Sub-graph Instances Group Sub-graphs July 12, 2023, Boston, MA, USA 8 / 21

Group Sub-graphs with the aid of SplitInfo

Sort a graph G in a topological order, each node denoting an SG .

Group SG by repeatedly considering three patterns

SG1

SG2

Straight.

SG1

SG2 SG3

SG4

Diamond.

SG1

SG2

SG3

Branch.

Schedule Sub-graph Instances Group Sub-graphs July 12, 2023, Boston, MA, USA 8 / 21

Group Sub-graphs with the aid of SplitInfo

Sort a graph G in a topological order, each node denoting an SG .
Group SG by repeatedly considering three patterns

SG1

SG2

Straight.

SG1

SG2 SG3

SG4

Diamond.

SG1

SG2

SG3

Branch.
Schedule Sub-graph Instances Group Sub-graphs July 12, 2023, Boston, MA, USA 8 / 21

Order Sub-graph Instances

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4

c1 c2

d1

GraphTurbo uses either a BFS heuristic to order these sub-graph
instances,

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 c1 c2 d1

or a DFS heuristic, which simplifies the algorithmic design.
a8 a7 b4 a6 a5 b3 c2 a4 a3 b2 a2 a1 b1 c1 d1

An ILP-based heuristic is under construction and will be released soon.

Schedule Sub-graph Instances Order Sub-graph Instances July 12, 2023, Boston, MA, USA 9 / 21

Order Sub-graph Instances

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4

c1 c2

d1

GraphTurbo uses either a BFS heuristic to order these sub-graph
instances,

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 c1 c2 d1

or a DFS heuristic, which simplifies the algorithmic design.
a8 a7 b4 a6 a5 b3 c2 a4 a3 b2 a2 a1 b1 c1 d1

An ILP-based heuristic is under construction and will be released soon.

Schedule Sub-graph Instances Order Sub-graph Instances July 12, 2023, Boston, MA, USA 9 / 21

Order Sub-graph Instances

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4

c1 c2

d1

GraphTurbo uses either a BFS heuristic to order these sub-graph
instances,

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 c1 c2 d1

or a DFS heuristic, which simplifies the algorithmic design.
a8 a7 b4 a6 a5 b3 c2 a4 a3 b2 a2 a1 b1 c1 d1

An ILP-based heuristic is under construction and will be released soon.

Schedule Sub-graph Instances Order Sub-graph Instances July 12, 2023, Boston, MA, USA 9 / 21

Order Sub-graph Instances

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4

c1 c2

d1

GraphTurbo uses either a BFS heuristic to order these sub-graph
instances,

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 c1 c2 d1

or a DFS heuristic, which simplifies the algorithmic design.
a8 a7 b4 a6 a5 b3 c2 a4 a3 b2 a2 a1 b1 c1 d1

An ILP-based heuristic is under construction and will be released soon.

Schedule Sub-graph Instances Order Sub-graph Instances July 12, 2023, Boston, MA, USA 9 / 21

Infer Core Binding and Buffer Scopes

Visit the scheduling result of sub-graph instances in a reverse order.
Either initialize binding information using a plain strategy and the
buffer scope using LB,
or infer the binding strategy from the output tensor.
A better strategy is selected if both inferred and initialized binding
information exist.

Schedule Sub-graph Instances Infer Core Binding and Buffer Scopes July 12, 2023, Boston, MA, USA 10 / 21

Infer Core Binding and Buffer Scopes

Visit the scheduling result of sub-graph instances in a reverse order.
Either initialize binding information using a plain strategy and the
buffer scope using LB,
or infer the binding strategy from the output tensor.
A better strategy is selected if both inferred and initialized binding
information exist.

Schedule Sub-graph Instances Infer Core Binding and Buffer Scopes July 12, 2023, Boston, MA, USA 10 / 21

Concatenate the Outputs of Sub-graph Instances

Detect fine-grained dependencies between sub-graph instances and
introduce a lightweight concatenation op when necessary.

a8 a7 a6 a5 a4 a3 a2 a1

b4 b3 b2 b1

c2 c1

d1

concat concat concat concat

concat concat

concat

shape=[2,28,28,512],
scope=GB,
bind=[2,2]

shape=[2,28,28,512],
scope=LB,
bind=[2,4]

copy(LB, GB) redistribute([2,2])

shape=[4,28,28,512],
scope=LB,
bind=[4,2]

Insert additional ops, e.g., copy, redistribute, for moving data across
the memory hierarchy if the binding strategies and memory scopes of
a concatenation op are different from each other.

How the approach is generalied to handle a sub-graph of multiple
output tensors and other cases is discussed in the paper.

Schedule Sub-graph Instances Concatenate Instance Outputs July 12, 2023, Boston, MA, USA 11 / 21

Concatenate the Outputs of Sub-graph Instances

Detect fine-grained dependencies between sub-graph instances and
introduce a lightweight concatenation op when necessary.

a8 a7 a6 a5 a4 a3 a2 a1

b4 b3 b2 b1

c2 c1

d1

concat concat concat concat

concat concat

concat

shape=[2,28,28,512],
scope=GB,
bind=[2,2]

shape=[2,28,28,512],
scope=LB,
bind=[2,4]

copy(LB, GB) redistribute([2,2])

shape=[4,28,28,512],
scope=LB,
bind=[4,2]

Insert additional ops, e.g., copy, redistribute, for moving data across
the memory hierarchy if the binding strategies and memory scopes of
a concatenation op are different from each other.

How the approach is generalied to handle a sub-graph of multiple
output tensors and other cases is discussed in the paper.

Schedule Sub-graph Instances Concatenate Instance Outputs July 12, 2023, Boston, MA, USA 11 / 21

Concatenate the Outputs of Sub-graph Instances

Detect fine-grained dependencies between sub-graph instances and
introduce a lightweight concatenation op when necessary.

a8 a7 a6 a5 a4 a3 a2 a1

b4 b3 b2 b1

c2 c1

d1

concat concat concat concat

concat concat

concat

shape=[2,28,28,512],
scope=GB,
bind=[2,2]

shape=[2,28,28,512],
scope=LB,
bind=[2,4]

copy(LB, GB) redistribute([2,2])

shape=[4,28,28,512],
scope=LB,
bind=[4,2]

Insert additional ops, e.g., copy, redistribute, for moving data across
the memory hierarchy if the binding strategies and memory scopes of
a concatenation op are different from each other.

How the approach is generalied to handle a sub-graph of multiple
output tensors and other cases is discussed in the paper.

Schedule Sub-graph Instances Concatenate Instance Outputs July 12, 2023, Boston, MA, USA 11 / 21

Loop Fusion within Layers

Generate one kernel for a sub-graph instance by expanding it as

LB buffer b3

read inputs

write output

conv block

identity block

identity block

identity block

layer #1

layer #2

layer #3 layer #4

layer #5

conv

batchnorm

ReLU

buffer stitching buffer stitching loop fusion

buffer stitching is performed between the components connected by
loop fusion is performed between the components connected by

an op that can be expressed using loop nests of arithmetic operations

Perform loop fusion within each layer

Generate Kernels for Sub-graph Instances Loop Fusion within Layers July 12, 2023, Boston, MA, USA 12 / 21

Loop Fusion within Layers

Generate one kernel for a sub-graph instance by expanding it as

LB buffer b3

read inputs

write output

conv block

identity block

identity block

identity block

layer #1

layer #2

layer #3 layer #4

layer #5

conv

batchnorm

ReLU

buffer stitching buffer stitching loop fusion

buffer stitching is performed between the components connected by
loop fusion is performed between the components connected by

an op that can be expressed using loop nests of arithmetic operations

Perform loop fusion within each layer

Generate Kernels for Sub-graph Instances Loop Fusion within Layers July 12, 2023, Boston, MA, USA 12 / 21

Buffer Stitching across Layers/Blocks

Remain the outputs of a layer in LB, e.g., res l1, instead of spilling it
to slower global memory
Consider both compute- and memory-intensive ops.

Generate Kernels for Sub-graph Instances Buffer Stitching across Layers/Blocks July 12, 2023, Boston, MA, USA 13 / 21

Memory Allocation and Reuse

Release the space consumed by an output tensor as early as possible.

The space with the logest liveness across multiple computation tasks
is first spilled in case LB cannot hold all tensors.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct1.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct4.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct5.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct7.

Generate Kernels for Sub-graph Instances Memory Allocation and Reuse July 12, 2023, Boston, MA, USA 14 / 21

Memory Allocation and Reuse

Release the space consumed by an output tensor as early as possible.

The space with the logest liveness across multiple computation tasks
is first spilled in case LB cannot hold all tensors.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct1.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct4.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct5.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

Execute ct7.

Generate Kernels for Sub-graph Instances Memory Allocation and Reuse July 12, 2023, Boston, MA, USA 14 / 21

Across-layer Instruction Scheduling

Weight tensors can be promoted as early as possible.

The latency of these promotion statements behind computation tasks.

hidden hidden

DMA hoisting dispatching

a layer’s computation

Enable across-layer memory latency hiding.

Generate Kernels for Sub-graph Instances Across-layer Instruction Scheduling July 12, 2023, Boston, MA, USA 15 / 21

Across-layer Instruction Scheduling

Weight tensors can be promoted as early as possible.

The latency of these promotion statements behind computation tasks.

hidden hidden

DMA hoisting dispatching

a layer’s computation

Enable across-layer memory latency hiding.

Generate Kernels for Sub-graph Instances Across-layer Instruction Scheduling July 12, 2023, Boston, MA, USA 15 / 21

Across-layer Instruction Scheduling

Weight tensors can be promoted as early as possible.

The latency of these promotion statements behind computation tasks.

hidden hidden

DMA hoisting dispatching

a layer’s computation

Enable across-layer memory latency hiding.

Generate Kernels for Sub-graph Instances Across-layer Instruction Scheduling July 12, 2023, Boston, MA, USA 15 / 21

Environments and Setup

The experiment platform is STCP920[1]

d ← 4; c ← 8; u ← 3
LB ← 64 KB L1
GB ← 8MB last local buffer (LLB)
CU1 ← vector core;CU2 ← VME;CU3 ← MME

DNN models: ResNet-50 v1.5, BERT, DLRM, MobileNet v2,
Vision Transformer, DenseNet, Conformer

DNN frameworks: Pytorch v1.81.1 for DLRM, and TensorFlow v1.13
for all others

Compare with TVM, AStitch, and a vendor-crafted implementation

[1]Rongkai Zhan et al. “NeuralScale: A RISC-V Based Neural Processor Boosting AI Inference in Clouds”. Fifth Workshop on
Computer Architecture Research with RISC-V. CARRV. Virtual, 2021.

Experimental Results Environments and Setup July 12, 2023, Boston, MA, USA 16 / 21

Environments and Setup

The experiment platform is STCP920[1]

d ← 4; c ← 8; u ← 3
LB ← 64 KB L1
GB ← 8MB last local buffer (LLB)
CU1 ← vector core;CU2 ← VME;CU3 ← MME

DNN models: ResNet-50 v1.5, BERT, DLRM, MobileNet v2,
Vision Transformer, DenseNet, Conformer

DNN frameworks: Pytorch v1.81.1 for DLRM, and TensorFlow v1.13
for all others

Compare with TVM, AStitch, and a vendor-crafted implementation
[1]Rongkai Zhan et al. “NeuralScale: A RISC-V Based Neural Processor Boosting AI Inference in Clouds”. Fifth Workshop on

Computer Architecture Research with RISC-V. CARRV. Virtual, 2021.

Experimental Results Environments and Setup July 12, 2023, Boston, MA, USA 16 / 21

Performance Comparison

We report the performance by selecting the optimal numbers of
batches per cluster.

How these optimal numbers are selected is discussed in the paper.

TVM fuses ops within a sub-graph, producing kernels that exchange
data via DDR.

AStitch neither orders sub-graph instances nor considers
compute-intensive ops.

On average, GraphTurbo outperforms TVM by 11.15×, AStitch by
6.16×, and the vendor-crafted implementation by 1.04×.

Compilation overhead of different approaches is reported in the paper.

Experimental Results Performance Comparison July 12, 2023, Boston, MA, USA 17 / 21

Performance Comparison

We report the performance by selecting the optimal numbers of
batches per cluster.

How these optimal numbers are selected is discussed in the paper.

TVM fuses ops within a sub-graph, producing kernels that exchange
data via DDR.

AStitch neither orders sub-graph instances nor considers
compute-intensive ops.

On average, GraphTurbo outperforms TVM by 11.15×, AStitch by
6.16×, and the vendor-crafted implementation by 1.04×.

Compilation overhead of different approaches is reported in the paper.

Experimental Results Performance Comparison July 12, 2023, Boston, MA, USA 17 / 21

Performance Comparison

We report the performance by selecting the optimal numbers of
batches per cluster.

How these optimal numbers are selected is discussed in the paper.

TVM fuses ops within a sub-graph, producing kernels that exchange
data via DDR.

AStitch neither orders sub-graph instances nor considers
compute-intensive ops.

On average, GraphTurbo outperforms TVM by 11.15×, AStitch by
6.16×, and the vendor-crafted implementation by 1.04×.

Compilation overhead of different approaches is reported in the paper.

Experimental Results Performance Comparison July 12, 2023, Boston, MA, USA 17 / 21

Performance Comparison

We report the performance by selecting the optimal numbers of
batches per cluster.

How these optimal numbers are selected is discussed in the paper.

TVM fuses ops within a sub-graph, producing kernels that exchange
data via DDR.

AStitch neither orders sub-graph instances nor considers
compute-intensive ops.

On average, GraphTurbo outperforms TVM by 11.15×, AStitch by
6.16×, and the vendor-crafted implementation by 1.04×.

Compilation overhead of different approaches is reported in the paper.

Experimental Results Performance Comparison July 12, 2023, Boston, MA, USA 17 / 21

Performance Comparison

We report the performance by selecting the optimal numbers of
batches per cluster.

How these optimal numbers are selected is discussed in the paper.

TVM fuses ops within a sub-graph, producing kernels that exchange
data via DDR.

AStitch neither orders sub-graph instances nor considers
compute-intensive ops.

On average, GraphTurbo outperforms TVM by 11.15×, AStitch by
6.16×, and the vendor-crafted implementation by 1.04×.

Compilation overhead of different approaches is reported in the paper.

Experimental Results Performance Comparison July 12, 2023, Boston, MA, USA 17 / 21

Performance Comparison

We report the performance by selecting the optimal numbers of
batches per cluster.

How these optimal numbers are selected is discussed in the paper.

TVM fuses ops within a sub-graph, producing kernels that exchange
data via DDR.

AStitch neither orders sub-graph instances nor considers
compute-intensive ops.

On average, GraphTurbo outperforms TVM by 11.15×, AStitch by
6.16×, and the vendor-crafted implementation by 1.04×.

Compilation overhead of different approaches is reported in the paper.

Experimental Results Performance Comparison July 12, 2023, Boston, MA, USA 17 / 21

Performance Breakdown

Evaluate how different factors of GraphTurbo contribute to the
overall speedup using four variants:

Variant 1: maximally keeps outputs in LLB

Variant 2: maximally keeps outputs in L1; outperforms Variant 1 by
3.67×. (demonstrating the importance of utilizing L1, i.e., the LB of
the DSA abstraction)

Variant 3: Variant 2 + schedule sub-graph instance; outperforms
Variant 1 by 2.20×.

Variant 4: Variant 3 + across-layer instruction scheduling;
outperforms Variant 1 by 1.72×.

Experimental Results Performance Breakdown July 12, 2023, Boston, MA, USA 18 / 21

Performance Breakdown

Evaluate how different factors of GraphTurbo contribute to the
overall speedup using four variants:

Variant 1: maximally keeps outputs in LLB

Variant 2: maximally keeps outputs in L1; outperforms Variant 1 by
3.67×. (demonstrating the importance of utilizing L1, i.e., the LB of
the DSA abstraction)

Variant 3: Variant 2 + schedule sub-graph instance; outperforms
Variant 1 by 2.20×.

Variant 4: Variant 3 + across-layer instruction scheduling;
outperforms Variant 1 by 1.72×.

Experimental Results Performance Breakdown July 12, 2023, Boston, MA, USA 18 / 21

Performance Breakdown

Evaluate how different factors of GraphTurbo contribute to the
overall speedup using four variants:

Variant 1: maximally keeps outputs in LLB

Variant 2: maximally keeps outputs in L1; outperforms Variant 1 by
3.67×. (demonstrating the importance of utilizing L1, i.e., the LB of
the DSA abstraction)

Variant 3: Variant 2 + schedule sub-graph instance; outperforms
Variant 1 by 2.20×.

Variant 4: Variant 3 + across-layer instruction scheduling;
outperforms Variant 1 by 1.72×.

Experimental Results Performance Breakdown July 12, 2023, Boston, MA, USA 18 / 21

Performance Breakdown

Evaluate how different factors of GraphTurbo contribute to the
overall speedup using four variants:

Variant 1: maximally keeps outputs in LLB

Variant 2: maximally keeps outputs in L1; outperforms Variant 1 by
3.67×. (demonstrating the importance of utilizing L1, i.e., the LB of
the DSA abstraction)

Variant 3: Variant 2 + schedule sub-graph instance; outperforms
Variant 1 by 2.20×.

Variant 4: Variant 3 + across-layer instruction scheduling;
outperforms Variant 1 by 1.72×.

Experimental Results Performance Breakdown July 12, 2023, Boston, MA, USA 18 / 21

Performance Breakdown

Evaluate how different factors of GraphTurbo contribute to the
overall speedup using four variants:

Variant 1: maximally keeps outputs in LLB

Variant 2: maximally keeps outputs in L1; outperforms Variant 1 by
3.67×. (demonstrating the importance of utilizing L1, i.e., the LB of
the DSA abstraction)

Variant 3: Variant 2 + schedule sub-graph instance; outperforms
Variant 1 by 2.20×.

Variant 4: Variant 3 + across-layer instruction scheduling;
outperforms Variant 1 by 1.72×.

Experimental Results Performance Breakdown July 12, 2023, Boston, MA, USA 18 / 21

Hardware Utilization

We report the frequencies of each memory level.

We also report how VME and MME are utilized.

The scalability to GPU is demonstrated in the paper using
ResNet18-Tailor, which outperforms the CUTLASS implementations
with and without convolution fusion by 1.06× and 1.23×.

Experimental Results Hardware Utilization July 12, 2023, Boston, MA, USA 19 / 21

Hardware Utilization

We report the frequencies of each memory level.

We also report how VME and MME are utilized.

The scalability to GPU is demonstrated in the paper using
ResNet18-Tailor, which outperforms the CUTLASS implementations
with and without convolution fusion by 1.06× and 1.23×.

Experimental Results Hardware Utilization July 12, 2023, Boston, MA, USA 19 / 21

Hardware Utilization

We report the frequencies of each memory level.

We also report how VME and MME are utilized.

The scalability to GPU is demonstrated in the paper using
ResNet18-Tailor, which outperforms the CUTLASS implementations
with and without convolution fusion by 1.06× and 1.23×.

Experimental Results Hardware Utilization July 12, 2023, Boston, MA, USA 19 / 21

Contributions

+ We recognize the importance of considering hardware architecture at
the graph partitioning level, enabling the synergy between network
and hardware architectures.

+ This synergy reduces off-core data movements, better saturates the
valuable local memory, and empowers across-layer instruction
scheduling.

+ We design and implement a novel scheduling approach GraphTurbo,
addressing the deployment of DNNs on DSA chips and offering
insight to other platforms.

+ The experimental results demonstrate that GraphTurbo can
outperform two state-of-the-art tools and achieve performance
comparable to the vendor-crafted code.

Conclusion Contributions July 12, 2023, Boston, MA, USA 20 / 21

Contributions

+ We recognize the importance of considering hardware architecture at
the graph partitioning level, enabling the synergy between network
and hardware architectures.

+ This synergy reduces off-core data movements, better saturates the
valuable local memory, and empowers across-layer instruction
scheduling.

+ We design and implement a novel scheduling approach GraphTurbo,
addressing the deployment of DNNs on DSA chips and offering
insight to other platforms.

+ The experimental results demonstrate that GraphTurbo can
outperform two state-of-the-art tools and achieve performance
comparable to the vendor-crafted code.

Conclusion Contributions July 12, 2023, Boston, MA, USA 20 / 21

Contributions

+ We recognize the importance of considering hardware architecture at
the graph partitioning level, enabling the synergy between network
and hardware architectures.

+ This synergy reduces off-core data movements, better saturates the
valuable local memory, and empowers across-layer instruction
scheduling.

+ We design and implement a novel scheduling approach GraphTurbo,
addressing the deployment of DNNs on DSA chips and offering
insight to other platforms.

+ The experimental results demonstrate that GraphTurbo can
outperform two state-of-the-art tools and achieve performance
comparable to the vendor-crafted code.

Conclusion Contributions July 12, 2023, Boston, MA, USA 20 / 21

Contributions

+ We recognize the importance of considering hardware architecture at
the graph partitioning level, enabling the synergy between network
and hardware architectures.

+ This synergy reduces off-core data movements, better saturates the
valuable local memory, and empowers across-layer instruction
scheduling.

+ We design and implement a novel scheduling approach GraphTurbo,
addressing the deployment of DNNs on DSA chips and offering
insight to other platforms.

+ The experimental results demonstrate that GraphTurbo can
outperform two state-of-the-art tools and achieve performance
comparable to the vendor-crafted code.

Conclusion Contributions July 12, 2023, Boston, MA, USA 20 / 21

Questions & Answers

We acknowledgment the TVM community led by Tianqi Chen, without whose work this paper
would be impossible.

Conclusion Q&A July 12, 2023, Boston, MA, USA 21 / 21

	Introduction
	DSA Abstraction
	Limitations of Prior Work
	Our Solution

	Overview
	Core Idea of GraphTurbo

	Schedule Sub-graph Instances
	Collect Splitting Information
	Group Sub-graphs
	Order Sub-graph Instances
	Infer Core Binding and Buffer Scopes
	Concatenate Instance Outputs

	Generate Kernels for Sub-graph Instances
	Loop Fusion within Layers
	Buffer Stitching across Layers/Blocks
	Memory Allocation and Reuse
	Across-layer Instruction Scheduling

	Experimental Results
	Environments and Setup
	Performance Comparison
	Performance Breakdown
	Hardware Utilization

	Conclusion
	Contributions
	Q&A

