Effectively Scheduling Computational Graphs of Deep Neural Networks toward Their Domain-Specific Accelerators

Jie Zhao, Information Engineering University; Siyuan Feng, Shanghai Jiao Tong University; Xiaoqiang Dan, Fei Liu, Chengke Wang, Sheng Yuan, Wenyuan Lv, and Qikai Xie, Stream Computing Inc.

https://www.usenix.org/conference/osdi23/presentation/zhao
Effectively Scheduling Computational Graphs of Deep Neural Networks toward Their Domain-Specific Accelerators

Jie Zhao
Information Engineering University

Siyuan Feng
Shanghai Jiao Tong University

Xiaojianqiang Dan, Fei Liu, Chengke Wang, Sheng Yuan, Wenyuan Lv, Qikai Xie
Stream Computing Inc.

Abstract

Fully exploiting the computing power of an accelerator specialized for deep neural networks (DNNs) calls for the synergy between network and hardware architectures, but existing approaches partition a computational graph of DNN into multiple sub-graphs by abstracting away hardware architecture and assign resources to each sub-graph, not only producing redundant off-core data movements but also under-utilizing the hardware resources of a domain-specific architecture (DSA).

This paper introduces a systematic approach for effectively scheduling DNN computational graphs on DSA platforms. By fully taking into account hardware architecture when partitioning a computational graph into coarse-grained sub-graphs, our work enables the synergy between network and hardware architectures, addressing several challenges of prior work: (1) it produces larger but fewer kernels, converting a large number of off-core data movements into on-core data exchanges; (2) it exploits the imbalanced memory usage distribution across DNN network architecture, better saturating the DSA memory hierarchy; (3) it enables across-layer instruction scheduling not studied before, further exploiting the parallelism across different specialized compute units.

Results of seven DNN inference models on a DSA platform show that our work outperforms TVM and AStitch by 11.15% and 6.16×, respectively. Hence, effectively scheduling DNNs toward this abstraction is essential to exploit the computing power of DNN accelerators for DSA compilers. Specialized for machine learning (ML) applications, these accelerators exhibit a scratchpad-based memory hierarchy and parallelism between both multiple cores and several CUs, but prior work [5, 13, 31, 54] devised to schedule DNNs on these DSA accelerators did not consider hardware architecture when partitioning a computational graph of DNN, introducing redundant off-core data movements.

1 Introduction and Background

Due to the slowing down of Moore’s Law, moving to DSAs is acknowledged as promising to meet the keen desire of DNNs for computing power [24]. After several years of investigation on accelerators specialized for DNNs [7, 8, 15, 22, 25, 29, 32, 55, 58], a commonly used DSA abstraction depicted on the left of Fig.1 has been formed for this application domain, based on which most existing DNN accelerators are manufactured.
ments (i.e., between LB and GB/DDR) and under-utilizing both faster local memory and parallelism across CUs.

1.1 Concepts and Notations

To explain the issues of prior work, we first introduce computational graphs, which are used by existing ML frameworks [1, 38] to represent DNN models. Fig.2 is an example. As it can contain a large number of nodes, each of which performs a computation task on several tensors, a computational graph usually references memory footprints that exceed the local memory capacity of its target platform and thus cannot be scheduled as a whole. Existing schedulers first partition it into sub-graphs and next assign resources to each sub-graph. A sub-graph, which is also known as a fused operator (op), is first initialized by a graph node and next grouped according to its producer-consumer relations with others, implemented as a kernel function or kernel executable on target platform.

![Figure 2: Computational graph of ResNet-50 [16].](image)

A node (a circle) represents an op, and an edge (a solid arrow) denotes a producer-consumer relation of two ops. An op is a function that takes as inputs one to several tensors and outputs another. At the bottom is a 3×3 convolution (conv) layer composed of three nodes. A dashed arrow connects a stage/block with its internal structure; a dotted box denotes a block. Other layers can be expressed in a similar way.

We use the term “layer” to denote a set of nodes connected in a straight-line manner, at most one out of which contains parameters that should be learned using the gradients of the loss. A graph node represents an op, which is traditionally referred to as a neural layer in neural networks. Some neural layers, however, do not require parameters to be learned (e.g., ReLU) or learned without using the gradients of the loss (e.g., batch normalization) during the training process, and they can thus be considered as the auxiliary ops of those that indeed require parameters, e.g., the convolution. We define layers as such because this definition summarizes the op fusion rules widely used by existing compilers [5, 53].

We also use the term “block” to represent an individual layer or a component composed of multiple layers that is recursively used in a DNN computational graph. For instance, the conv block composed of five layers is used once in each stage of Fig.2, while the identity block is used multiple times within each stage.

The term “stage” is a logical, high-level abstraction used in the architecture of the ResNet-50 model, taking the results of its preceding stage as inputs and generating output tensors. It is used to simplify the design of the network architecture but usually not considered by optimizing compilers.

1.2 Challenges of Prior Work

By obscuring hardware architecture, prior work [5, 19, 54] constraints sub-graph grouping within a layer [39] (the bottom level of Fig.2) and produces fine-grained sub-graphs. As each sub-graph is implemented by one kernel, prior work produces more kernels and requires more off-core data movements between kernels. Going one level upper in Fig.2 can observe five and four layers in the conv and identity blocks, so the entire network may require hundreds to thousands of kernels and off-core data movements of the same order of magnitude [21], resulting in high pressure on the limited memory bandwidth of a DSA platform. In addition, managing such a large number of off-core data movements for DSA is non-trivial because, unlike a general-purpose architecture reinforced by its mature hardware mechanisms, the hierarchical scratchpad memory of the later is still controlled by hand or software [37].

Even though managing the data movements across a DSA’s memory hierarchy is possible, generating fine-grained sub-graphs still misses the across-layer instruction scheduling opportunities. Once formed, each sub-graph is lowered to a loop nest pipeline, to which memory optimizations and loop transformations like tiling and fusion are applied to better utilize hardware resources. While their different compositions constitute the search space that existing autotuners [2, 6, 26, 57] navigate to select the optimal scheduling, across-layer instruction scheduling opportunities, e.g., overlapping the memory promotion statement of weights and the computation task of a 3×3 conv layer with those of its preceding 1×1 conv layer in Fig.2, are not covered by such spaces.

Finally, since the imbalanced memory usage distribution, which refers to a phenomenon where memory usages vary across network architecture [30], is not exposed/exploited, the above scheduling paradigm also under-utilizes the faster local memory of DSA. On the top of Fig.2, ResNet-50 is partitioned into four stages, each composed of one conv block and two or more identity blocks. A conv block converts its input with shape $[N, C, H, W]$ into $[N, 2C, H/S, W/S]$, performing a down-sampling operation when $S > 1$, but an
identity block does not change its tensor shapes. The memory usage of stage1 is $\frac{n^2}{2} \times$ larger than that of stage2, and this property also exists in stage3 and stage4. If the faster memory of the target DSA is saturated when executing stage1, it will be under-utilized when executing the remaining stages.

1.3 Our Solution and the Organization of the Paper

To address the aforementioned issues on DSA platforms, we introduce a novel scheduling approach in this paper. First, as redundant off-core data movements are caused by fine-grained sub-graphs produced by existing tools [5, 13, 19, 44], our approach has to construct coarser-grained sub-graphs that can generate larger kernels, which can change massive output tensors originally exchanged through GB/DDR of Fig.1 into intermediate tensors that can stay in LB of the later, thereby converting many off-core data movements between kernels into on-core data exchanges within kernels. Second, to enable across-layer instruction scheduling outside the search spaces of prior work [31, 57, 59], a sub-graph constructed by our work must be able to group layers or even blocks like those of Fig.2, thus better hiding memory latency and exploiting the parallelism across CUs. Finally, to saturate the faster local memory of a DSA platform in the presence of imbalanced memory usage distribution [30], our method should consider the internal relations between coarser-grained sub-graphs such that a better scheduling order can be obtained.

With these considerations in mind, we design and implement a novel scheduling approach—GraphTurbo. §2 exemplifies the core idea and presents the overview of GraphTurbo. §3 explains how GraphTurbo constructs, splits and orders coarse-grained sub-graphs, to the results of which §4 generates larger kernels. §5 reports the experimental results of seven DNN inference models on a DSA platform, which demonstrate that, while achieving performance close to the vendor-crafted implementation, GraphTurbo outperforms TVM [5] and AStitch [60] by 11.15× and 6.16×, respectively. A case study on GPU also shows that GraphTurbo can surpass CUT-LASS [27] with and without conv fusion by 1.06× and 1.23×, respectively. Finally, §6 discusses the related work, and §7 concludes the work.

1.4 Contributions

In summary, this paper makes the following contributions.

- We design and implement a novel scheduling approach GraphTurbo, addressing the deployment of DNNs on DSA chips and offering insight to other platforms.

- The experimental results demonstrate that GraphTurbo can outperform two state-of-the-art tools and achieve performance comparable to the vendor-crafted code.

2 Core Idea and Overview

This section first explains the core idea of GraphTurbo and next presents its overview.

2.1 Exemplifying the Core Idea

We use Fig.2 that classifies a batch of input images into different categories as an example to explain our core idea. Data parallelism is exploited across the d clusters of Fig.1, which is always possible due to the multi-dimensional parallelism of tensors. Decomposing the input tensors of a DNN model into d clusters can be achieved by splitting one or multiple parallelizable dimensions. We assume the batch dimension of size $N = 32$ is split across these clusters, so each cluster processes $n = 8$ images that have been offloaded to GB of Fig.1.

Our work studies how a DNN model is scheduled within one cluster. The core idea is to maximally preserve the input tensors in LB in order to convert as many off-core data movements as possible into on-core data exchanges. For the sake of clarity, we reproduce the stages of Fig.2 in Fig.3a and assume that each stage performs a down-sampling operation with $S = 2$.

![Figure 3: Utilization of LB under different scheduling methods. Timestamps in (b) define the scheduling of GraphTurbo.](image)

<table>
<thead>
<tr>
<th>Stage</th>
<th>LB of Fig.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>stage1</td>
<td></td>
</tr>
<tr>
<td>stage2</td>
<td></td>
</tr>
<tr>
<td>stage3</td>
<td></td>
</tr>
<tr>
<td>stage4</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Utilization of LB under different scheduling methods. Timestamps in (b) define the scheduling of GraphTurbo.

Existing approaches [5, 13] can construct a sub-graph larger than a layer by grouping smaller ones, but they do not know when the grouping should terminate without hardware architectural information. Even though larger sub-graphs could be constructed for each stage of Fig.3a, these methods only schedule these sub-graphs according to their coarser-grained dependencies as the arrows show in Fig.3a, which produces a scheduling strategy that distributes each sub-graph of a stage onto the c cores of Fig.1. Suppose that the batch dimension is
split, then each core processes one image. If an image saturates LB when executing stage 1, it will under-utilize this local memory when its core executes the later three stages, since their preceding stages reduce the tensor size by $2 \times 4 \times$ and $8 \times$, respectively, by performing down-sampling operations.

GraphTurbo can easily construct large sub-graphs for each stage by synthesizing network and hardware architectures. It splits these large sub-graphs into eight, four, two, and one instance, respectively, converting the coarse-grained dependencies between large sub-graphs into fine-grained ones between sub-graph instances. By eliminating redundant fine-grained dependencies, GraphTurbo executes two instances of stage 1’s sub-graph at timestamp 1 and 2 in Fig.3b, saturating LB while exploiting the parallelism across cores by distributing other parallelizable dimensions across them.

Next, GraphTurbo executes one instance of stage 2’s sub-graph at timestamp 3, which processes two images, both in LB, as shown in Fig.3b, because the image size is decreased by $2 \times$. LB is thus not under-utilized. The parallelism across c cores is exploited by distributing both the batch and other parallelizable dimensions. Readers can follow the timestamps to infer the scheduling order and find that LB is never under-utilized while fully exploiting the parallelism between cores. In particular, this scheduling approach achieves a $7.97 \times$ speedup over TVM on our experimental platform.

2.2 Overview of GraphTurbo

To obtain scheduling strategies similar to Fig.3b, GraphTurbo takes in a computational graph simplified by some standard graph optimizations \([13,23]\) and schedules it at graph level (§3). To construct coarser-grained sub-graphs, e.g., for stages of Fig.3a, GraphTurbo first collects hardware information (§3.1) to guide its grouping process (§3.2) by synthesizing network and hardware architectures. These sub-graphs are then split into instances, which are sorted (§3.3) to achieve the scheduling order like in Fig.3b. How parallelism is exploited and load balance is guaranteed across multiple cores are then explained (§3.4), with core binding and memory scopes automatically inferred. A concatenation step is then used to collect the tensors of producer sub-graph instances (§3.5), followed by some generalization discussions (§3.6).

The graph scheduler produces ordered sub-graph instances, which are delivered to the kernel generator (§4), producing kernels by combining loop fusion (§4.1) and buffer stitching (§4.2), with memory allocation and reuse automatically managed (§4.3). For the example in §2.1, the graph scheduler concentrates on input images. The convolution weights of the model are getting larger but only used within layers and do not result in communications between stages. GraphTurbo only allocates a small, fixed size of buffers in LB to allow for the promotion of such tensors to local memory when handling each layer, and the overhead of such memory promotion statements is hidden behind the computation (§4.4).

3 Scheduling Sub-graph Instances

This section constructs coarser-grained sub-graphs and schedules their instances. To achieve this goal, we need to address five issues and thus organize this section into five steps, with the difficulties explained at the beginning of each.

3.1 Collecting Splitting Information

GraphTurbo relies on producer-consumer relations between sub-graphs to group them into larger ones. This strategy, however, does not know when to stop without knowing hardware architectural information. Hence, this section first collects hardware knowledge for sub-graphs. As it will also be used to split sub-graphs (§3.3), we refer to it as splitting information SplitInfo, which is a set of 4D tuples $(\text{split}_d, n_d, f_d, d)$. Alg.1 summarizes how to compute it.

```
Algorithm 1: Compute SplitInfo
1. $\text{SplitInfo} \leftarrow \emptyset$
2. $\text{foreach } d \text{ in } [1, \ldots, \text{depth} \leftarrow \text{dimout (output of SG)}] \text{ do}$
3. \hspace{1em} $n_d \leftarrow 0; \text{split}_d \leftarrow 0; f_d \leftarrow \infty$
4. \hspace{1em} $\text{foreach } v \text{ in } [1, 2, 4, 8, \ldots, \text{size}_d^{\text{output}}] \text{ do}$
5. \hspace{2em} if $\lceil \frac{\text{break}}{\text{num_of_op}(t)} \rceil \leq \text{sizeof (LB)) then}$
6. \hspace{3em} $n_d \leftarrow n_d + 1; \text{split}_d \leftarrow 1; f_d \leftarrow v; \text{break;}
7. \hspace{1em} $\text{foreach } i \text{ in intermediates do}$
8. \hspace{2em} if $\text{split}_i = 1$ then
9. \hspace{3em} $n_d \leftarrow n_d + \text{num_of_op}(t)$
10. \hspace{2em} if $\text{match_dim}(t, d) \text{ and size}_d^{\text{output}} \% f_d = 0$ then
11. \hspace{3em} $\text{SplitInfo} \leftarrow \text{SplitInfo} \cup \{(\text{split}_d, n_d, f_d, d)\}$
```

Before grouped, a sub-graph SG is a node that represents an op. When lowered, it may produce several loop nests since the op it represents can be complex such that multiple intermediate tensors are used to realize its function \([53]\). Except the last one that defines the output tensor, all remaining loop nests write to intermediate tensors. Alg.1 computes SplitInfo by first splitting the output tensor (lines 3-6) and next propagating its splitting information to each of intermediate tensors (lines 8-11) due to the following reasons.

First, a sub-graph has one output but its input tensors can be many. Considering only the output tensor simplifies the algorithmic design. Second, it is the output that determines how the loop nests of this sub-graph should be split or tiled \([41,52]\). Once the information of the output and intermediate tensors is determined, how input tensors should be split is also known.

Indeed, computing SplitInfo this way may introduce re-computation of intermediate or input tensors, which would be expensive when fusing multiple conv or matrix multiplication ops. We thus use a simple cost model to prevent excessive recomputations that offset the benefits brought by fusion.

depth represents the loop nest depth of the output tensor. By iterating a loop dimension d from the outermost to inner (line 2), Alg.1 makes use of the parallelism across cores as early as possible. Next, Alg.1 defines three metrics (line 3),
split_d, f_d, n_d, that represent whether the current dimension \(d\) can be split, the splitting factor of this dimension, and the number of ops split by it, respectively.

\(v\) iterates the values of line 4 to instantiate \(f_d\). We consider \(s\text{ize}_{\text{output}}^{(d)}\) that denotes the loop extent of the current dimension \(d\) as the upper bound because \(v > s\text{ize}_{\text{output}}^{(d)}\) does not split the current dimension \(d\). The first three values decompose the dimension \(d\) into eight, four, and two cores, while guaranteeing load balance across them. The two first stages in Fig.3b are split this way. Values between \(8 \leq v \leq s\text{ize}_{\text{output}}^{(d)}\) do not exploit the parallelism of the current dimension \(d\) across cores but parallelize other dimensions, with load balance across cores fully considered. The splitting of stage1 in Fig.3b is an example of this case. A value is used to instantiate \(f_d\) (line 6) if the size of memory footprints, \([\text{peak}_v]\), required by a sub-graph instance does not exceed the memory capacity of LB (line 5). \(\text{peak}\) is the size of memory footprints required by \(SG\). \(n_d\) and \(\text{split}_d\) are also updated accordingly. As a smaller \(v\) partitions \(\text{peak}\) into larger pieces, the \(v\) loop here is a greedy strategy.

\(t\) iterates each intermediate tensor (line 7). It takes in the dimension \(d\) and first inspects whether the dimension can split the output tensor (line 8). \(n_d\) is increased by the number of ops in \(t\) (line 9) if this condition is satisfied. In addition, the 4D tuple is added to \(\text{SplitInfo}\) (line 11) if the dimension \(d\) matches one loop dimension of \(t\) and the loop extent of the matched dimension \(s\text{ize}_{\text{output}}^{(d)}\) is dividable by \(f_d\) (line 10).

By exactly computing \(\text{SplitInfo}\) for sub-graphs, GraphTurbo determines appropriate sizes for its generated kernels. \(\text{SplitInfo}\) usually has several elements and each one encodes a loop dimension that can be split. GraphTurbo needs to select the best dimension for a sub-graph. We consider the following criteria for this issue. First, a loop dimension is better if it splits more ops. Second, a loop dimension with a smaller splitting factor is preferred since it tends to better saturate LB. Finally, a dimension with a smaller loop depth is considered superior since it exhibits outer parallelism and fewer communications. These criteria are modeled as computing the lexicographical maximum of an optimization problem

\[
\text{lexmax}_{d \in \text{SplitInfo}} (n_d, -f_d, -d)
\]

where the order of the three metrics defines the priorities.

3.2 Grouping Sub-graphs

Now we can group sub-graphs. GraphTurbo still performs this step according to producer-consumer relations, but it constructs larger sub-graphs by leveraging \(\text{SplitInfo}\) to determine the termination of grouping, which is not restricted within layers [5, 19, 54]. \(\text{Algo.2}\) outlines the process.

\(\text{Algo.2}\) first sorts a computational graph \(G\) by topologically ordering all of its \(g\) nodes (line 1), each of which is treated as one sub-graph \(SG\) and delivered to \(\text{Algo.1}\) to compute its

Algorithm 2: Group sub-graphs

\[
\begin{aligned}
\text{BestSplit}[i] &\leftarrow \text{Eq. (1)}(SG[1], \text{SplitInfo}[i]); \\
\text{foreach} i \text{ in } [1, \ldots, g] \text{ do} \\
\{g, s\} &\leftarrow \text{straight_merge}(SG[1], \text{SplitInfo}[1], \ldots, b); \\
\{g, d\} &\leftarrow \text{diamond_merge}(SG[1], \text{SplitInfo}[1], \ldots, s); \\
\{g, b\} &\leftarrow \text{branch_merge}(SG[1], \text{SplitInfo}[1], \ldots, d); \\
\text{foreach} i \text{ in } [1, \ldots, s] \text{ do} \\
\text{foreach} i \text{ in } [1, \ldots, d] \text{ do} \\
\text{foreach} i \text{ in } [1, \ldots, b] \text{ do} \\
\text{until } s, d \text{ and } b \text{ all do not decrease;}
\end{aligned}
\]

\(\text{SplitInfo}\) (lines 2-3). Next, \(\text{Algo.2}\) considers three different merging patterns (lines 5-15) to group these sub-graphs, which reduces the number of sub-graphs from \(g\) to \(s, d\), and \(b\), respectively. The sub-graph index and \(\text{BestSplit}\) are updated each time a merging pattern is grouped.

Figure 4: Merging patterns considered by GraphTurbo. A solid arrow is the producer-consumer relation, and a dashed one denotes a possible connection with another sub-graph.

The merging patterns considered by \(\text{Algo.2}\) are defined as follows. First, two sub-graphs \(SG_1\) and \(SG_2\) form a straight pattern (Fig.4a) if and only if (iff) \(SG_1\) is the unique producer of \(SG_2\) and \(SG_2\) is the unique consumer of \(SG_1\). Second, four sub-graphs make a diamond pattern (Fig.4b) iff there are only one entry, one exit and at least two paths from the entry to the exit. The entry \(SG_1\)/exit \(SG_4\) can be a consumer/producer of multiple outside sub-graphs. Third, three sub-graphs constitute a branch pattern (Fig.4c) iff there exists only one exit and multiple paths to it, and \(SG_1\) could be but not necessarily a producer of \(SG_2\).

Instead of grouping all components of a merging pattern, \(\text{Algo.2}\) fuses a subset of them into a larger sub-graph \(SG\), as shown by a red dotted box in Fig.4. \(\text{Algo.2}\) uses two heuristic rules to determine whether the grouping is allowed. For instance, \(SG_1\) and \(SG_2\) of Fig.4a (or \(SG_2\) and \(SG_3\) of Fig.4c) can be merged if two preconditions are satisfied. First, the splitting factor of \(SG_2\) of Fig.4a (or \(SG_2\) of Fig.4c) is no less than that of \(SG_1\) (or \(SG_2\)). As a larger splitting factor partitions \(peak\) into smaller pieces, this precondition
prohibits the propagation of a sub-graph’s large splitting factor to its followers in the case of down-sampling operations. Second, the splitting factor of SG is not larger than that of SG2, ensuring that the grouping result does not deteriorate the utilization of LB exploited by SG2. SplitInfo of SG can be computed using Algo.1.

(ii) SG2, SG3 and SG4 of Fig.4b can be merged into SG if the splitting factor of SG is not larger than the maximum among the splitting factors of SG2, SG3 and SG4, which is also used to guarantee good LB utilization.

We now explain how the conv and identity blocks of Fig.2 are grouped. First, Algo.2 identifies the straight patterns in each layer and obtains Fig.5a. Specifically, the three layers on the left of the conv block in Fig.2 is identified as a straight pattern, fused into one sub-graph denoted using label 1. Neither of the conv and the ReLU layers of this conv block is identified as a straight pattern; instead, they both form individual sub-graphs, represented using labels 2 and 3, respectively. Similarly, the three conv layers of the identity block constitute a straight pattern, depicted using the sub-graph with label 4; and its ReLU layer is denoted using label 5.

![Figure 5: Merging the conv and identity blocks of Fig.2.](image)

Next, Algo.2 finds two branch patterns (i.e., sub-graphs 3 and 5 in Fig.5a) and produces Fig.5b, the straight patterns of which are first merged into Fig.5c and finally form a single sub-graph {1, 2, 3, 4, 5}. The preconditions of the above two rules are all satisfied when merging these patterns. In practice, Algo.2 can also group the multiple identity blocks and a conv block into a single sub-graph, thus producing four large sub-graphs for stages in Fig.3a. These large sub-graph are no longer grouped because the second precondition of Rule (i) is not satisfied.

3.3 Ordering Sub-graph Instances

The synergy between network and hardware architectures enabled by §3.1 and §3.2 partitions a computational graph into larger sub-graphs. In addition, GraphTurbo also uses SplitInfo to split each sub-graph into instances, the order of which is determined in this section.

For instance, each stage in Fig.3a is converted into one to multiple labeled sub-graph instances with the same color, forming the new graph in Fig.6. All instances at the same horizontal level are homogeneous and thus can be executed in any other. The edges between these instances are inherited from sub-graphs, but the gray ones are redundant and easily eliminated. Specifically, we determine whether an edge is redundant or not by checking whether the output of a producer instance is used by one consumer instance. This is achievable because combining SplitInfo and the shape of an output tensor can perform this checking. The considered edge is redundant and eliminated if the checking result is true.

![Figure 6: Sub-graph instances of the four stages in Fig.3a.](image)

GraphTurbo currently uses two approaches to schedule a computational group G of sub-graph instances. First, it visits sub-graph instances in a breadth-first search (BFS), producing a schedule order shown in Fig.7a. Second, GraphTurbo visits them in a depth-first search (DFS), as described in Algo.3. We currently only use the BFS and DFS searches because they simplify the algorithmic design of GraphTurbo. As will be reported in §5, this choice achieves promising results. We are currently working on an integer linear programming approach to find a better solution than both of these search heuristics, which will be released soon.

Algo.3 first instantiates a list visit by visiting G in any orders (line 1) and next moves all of its sub-graph instances with no in-degrees from visit to another list ready in order (lines 3-4). The in- and out-degrees of SGI are only determined by the black edges in Fig.6. The last SGI with no in-degrees of visit (lines 6-8) is extracted and added into the ordered list order (line 9), with its consumers updated (lines 12-13) and moved from visit to ready (line 14).

Algorithm 3: Schedule Sub-graph Instances

```plaintext
visit ← get_subgraph_instances(G);
while visit ≠ ∅ do
    foreach indegree(SGI) = 0 in visit do
        ready ← ready.push(SGI); visit ← visit \ SGI;
    while ready ≠ ∅ do
        p ← sizeofready();
        while indegree(SGI) ≠ 0 do
            p ← p − 1;
            order ← order.push(SGI); ready ← ready \ SGI;
        SGI in visit and ready do
            if SGI is a producer of SGI then
                remove producer(SGI, SGI);
            indegree(SGI) ← indegree(SGI) − 1;
            ready ← ready.push(SGI); visit ← visit \ SGI;
```

As an example, Fig.7 illustrates how the three lists change when Algo.3 is applied. In particular, as G can be visited in any order, we assume that it is visited in a BFS order for illustrative purpose. order is inspected from left to right. GraphTurbo finally selects the better one (Fig.3b) between the two results with respect to memory utilization. The labels
of each circle in Fig.7f would change if G is visited in other orders but the colors not, which does not matter because all instances of the same sub-graph are homogeneous.

![Graph](image)

Figure 7: Different schedule orders of Fig.6. We only show the first four steps of Algo.3 for the sake of clarity.

3.4 Inferring Core Binding and Buffer Scopes

The next step is to **bind each ordered sub-graph instance to multiple cores**. A sub-graph instance’s binding strategy can be determined by inspecting the loop dimensions of its output tensor. However, determining binding strategies individually may introduce more communications due to the mismatching between them. We use Algo.4 to infer binding strategies.

As Algo.4 can detect the mismatching between a pair of producer-consumer sub-graph instances, it also uses such information to **infer at which buffer scopes the output tensor of a sub-graph instance should be declared**. It first visits a schedule order O like Fig.7f in a reverse order and records all corresponding sub-graph instances in a list visit (line 1). Defined by default as an empty tuple [], and LB, bind[i] and scope[i] are used to record the binding strategy of a sub-graph instance and at which buffer level its output tensor is declared, respectively (line 2). As an output tensor is taken in by another sub-graph instance, we do not care about where the input tensors of a sub-graph instance should be declared. A sub-graph instance also produces intermediate tensors, not input tensors of a sub-graph instance should be declared. A plain binding strategy (line 5) and infers the binding strategy of the input scope is empty (lines 3-16). If bind[i] is empty (i.e., no information can be used for inference) or scope[i] is not LB (i.e., the known information cannot be used for inference) (line 4), Algo.4 instantiates bind[i] using a plain strategy (line 5) and infers the binding strategy of the input tensors of the current sub-graph instance. A plain binding strategy is obtained by greedily allocating more cores from the outermost to inner loop dimensions of a tensor. The binding factors along multiple dimensions form a multi-dimensional tuple. Algo.4 tries to instantiate a binding factor by iterating integers 8, 4, 2, and 1, which guarantees load balance across cores. The iteration turns into its next value if a loop extent size[i] is not dividable by current one. Note that some tensors can have some specific requirements annotated to their loop dimensions, which cannot be bound to cores.

Next, Algo.4 uses infer_binding to infer the binding strategies of visit[i]'s input tensors, which are the output tensors of visit[i]'s producers (line 8). The inference is achieved by first matching loop dimensions of an input tensor as line 10 of Algo.1 does and next propagating the binding factors of the matched dimension from the output tensor. A binding strategy can be invalid if it does not satisfy the annotated requirements. Hence, Algo.4 falls into one of the following three cases when the inferred binding strategy is neither empty nor invalid: (1) bind[i] is instantiated by the inferred binding strategy if it has not yet been defined (lines 9-10); (2) scope[j] is overwritten by GB if the already defined bind[j] does not match the inferred binding strategy (lines 11-12), since a communication is required here (see §3.5); (3) no mismatching between the already defined bind[j] and the inference succeeds, and Algo.4 steps into next iteration (lines 13-14).

bind[i] is inferred and not empty in the else case (line 15), for which Algo.4 tries to update bind[i] by reconsidering the possibly annotated requirements of visit[i]'s output tensor and computes a plain binding strategy for it. The one using more cores between these two binding strategies is finally used to rewrite bind[i] (line 16).

Algorithm 4: Infer Core Binding and Buffer Scopes

```
1 visit ← DFS.visit_reverse_order(O); size ← sizeof(visit);
2 bind[1,…,size] ← {}; scope[1,…,size] ← {LB};
3 foreach i in [1,…,size] do
4   if bind[i] = [] or scope[i] ≠ LB then
5     bind[i] ← plain_binding (output of visit[i]);
6     if infer_binding (bind[i]) = [] or is invalid then
7       continue;
8     foreach producer[j] in visit do
9       if bind[j] = [] then
10      bind[j] ← infer_binding (bind[j]);
11     else if bind[j] ≠ infer_binding (bind[j]) then
12        scope[j] ← GB;
13        else
14          continue;
15       else
16      bind[i] ← update_binding (bind[i]) uses more cores than
17      plain_binding (output of visit[i])? update_binding
18      (bind[i]): plain_binding (output of visit[i]);
```

3.5 Concatenating Instance Outputs

As GraphTurbo splits a sub-graph into multiple instances, the output tensor of a sub-graph is also partitioned into multiple pieces. Hence, this section introduces the step to concatenate the outputs of these sub-graph instances.

To implement this step, GraphTurbo detects fine-grained
dependencies between sub-graph instances and introduces concatenation ops before each consumer of multiple producers, obtaining Fig.8 for the running example. A concatenation op is lightweight since its inputs and output stay in either LB or GB. GraphTurbo needs to insert additional ops for moving data across the memory hierarchy if the binding strategies and memory scopes of the tensors taken in by a concatenation op are different from each other and/or those of its output.

Fig.9 depicts two scenarios where such (gray) ops should be inserted. A sub-graph instance or an auxiliary op is denoted using an ellipse that displays the shape, scope and binding strategy of its output tensor. On the left, a copying op is introduced once mismatching between the memory scopes is captured, promoting data from its input (GB) to its output (LB). On the right, a redistribution op is inserted due to the difference between binding strategies, triggering a communication between cores. This can be achieved by resetting the tuple using the smaller binding factors along each dimension.

3.6 Generalizing the Approach

Now GraphTurbo can effectively schedule a DNN computational graph, but we made some assumptions in its design. This section discusses how they can be generalized. First, §3.1 assumes that a sub-graph has one output tensor, which is often the case in practice. One can repeat Algo.1 for each output tensor of a sub-graph that contains multiple output tensors.

Second, the rules defined in §3.2 take into account down-sampling operations in a DNN model. However, our scheduler can also be generalized to target up-sampling operations by simply modifying Rule (i). A further split op, which can be considered as the opposite of the concatenation op introduced in §3.5 may be required to distribute the output of a sub-graph instance to its multiple consumers. We did not experiment with up-sampling operations in this work.

Third, §3.3 uses two methods to order sub-graph instances, which are simple but effective, as will be demonstrated in §5. We are now investigating another heuristic by allocating higher priorities to sub-graph instances with heavier memory footprints and plan to release it in the future.

Finally, GraphTurbo greedily uses LB, but, as a suggestion, it could be replaced by GB to schedule a computational graph across the d clusters of Fig.1. It could also be substituted by faster memory of other platforms, e.g., shared memory of GPU. Interestingly, much larger LB sizes would simplify the algorithmic flow of GraphTurbo. Even when splitting a sub-graph instance is unnecessary, GraphTurbo could obtain a similar scheduling to TVM but with across-layer memory optimizations (§4.4) fully considered. Moreover, making use of the higher-level buffer, e.g., those residing in CUs of Fig.1 if any, is profitable, since data exchanges between such buffers and LB may dominate the communications in such cases.

4 Kernel Generation for Sub-graph Instances

Once scheduled sub-graph instances are obtained, the kernel generator can take each of them as input and lower them into loop nest pipelines. The task of our kernel generator is to generate larger kernels by implementing loop transformations and stitching the intermediate tensor in the faster local memory of a DSA platform. To minimize the engineering cost, we prototype our kernel generator in TVM [5], but it may fail to produce a single kernel for one sub-graph instance. Fig.10 exemplifies this issue by gradually expanding one sub-graph instance, b3, of Fig.8.

Figure 8: Concatenate instance outputs. Figure 9: Insert data movement ops.

Figure 10: Expand b3 to generate a single kernel for it. b3 is sub-graph instance of stage2 of Fig.2. It is expanded to one conv block and three identity blocks, each of which is then expanded to multiple layers. How the conv block is expanded is shown in the middle, which obtains five layers shown on the left of the block level of Fig.2. These layers are labeled, and how layer #2 is expanded is shown on the rightmost, which produces the three ops shown at the layer level of Fig.2.

The rightmost part is what TVM’s kernel generator takes in, but Fig.10 shows that b3 is composed of 38 ops (11 for the conv block and 9 for each identity block), out of which 13 are conv ops (4 for the conv block and 3 for each identity block). Performing loop fusion across multiple conv ops is outside the power of TVM’s kernel generator. Although CUTLASS [27] was recently integrated into TVM to alleviate this problem for GPU [50], the number of acceptable conv ops is still limited. Furthermore, even if a similar vendor-crafted library can be offered on a DSA platform, the kernel generator would still put the output of a sub-graph instance in DDR, which in turn
would regress the benefit created by GraphTurbo.

4.1 Loop Fusion within Layers

The kernel generator can easily fuse ops within a layer. We use layer #2 in Fig.10 as an example and lower it to the loop nest pipeline shown in the middle of Fig.11. Since TVM requires users to write schedule templates for these loop nests, simply adopting its workflow cannot fully automate GraphTurbo.

Figure 11: Loop fusion within a layer. Left: fetch the scope information of the sub-graph instance \(b3 \) in Fig.8. Middle: the loop nest pipeline of layer #2 in Fig.10. Right: the tiled and fused loop nest, with memory promotion statements of weights automatically inserted. Red arrows connect the anchor op with its tiled loop dimensions. Blue arrows represent that the ops fetch the scope information from Relay IR.

To resolve this issue, GraphTurbo selects an anchor op out of each layer and automatically performs loop tiling on this op. An anchor op should be set using either conv/matrix multiplication if the later appears in the current layer, or the last op of the layer otherwise. In the later case, the anchor op should be an elementwise op. The outermost two loop dimensions are selected for tiling because they are parallelizable in both cases. The tile sizes along the two dimensions of an anchor op are then selected in a similar way to that used to determine a plain binding strategy in §3.4, which greedily maximizes the memory utilization of LB. In other words, a tile size is instantiated using a largest integer that not only divides the current loop extent but also allows the resulted tiled tensors to stay in LB. Once the tile shape and sizes of the anchor op are determined, the loop bounds of other ops can be inferred and fused with the anchor op, just like what existing techniques [41, 52] did, producing the fused and tiled loop nest shown in the red regions of Fig.11.

By converting the tensors written by the conv and batch-norm ops into intermediate ones, this method automatically allocates them in faster memory, as mentioned in §3.4. Before doing so, the kernel generator fetches the scope information of the current sub-graph instance, i.e., \(b3 \) in Fig.11, allocating intermediate tensors at the defined memory level. Memory promotion statements of a weight tensor are also automatically injected in the same way, as shown by the blue region of Fig.11. Note that some ops like batch normalization can be folded, but we keep it here for illustrative purpose.

4.2 Buffer Stitching across Layers/Blocks

After the internal of a layer is fused, we do not put its output back to DDR but still let it remain in LB, e.g., \(\text{res}_l1 \) in Fig.11. Hence, all layers of the conv block can exchange their data via LB, which we refer to as buffer stitching and the kernels used to implement these layers can be wrapped into one. The input tensors of the conv block are also put in LB, as declared by scope in §3.4. An identity block can be handled in a similar way. As the output tensors of each block’s last layer also stay in LB, the four blocks can all be stitched together.

By targeting memory-intensive ops, AStitch [60] also implements a similar functionality. However, our work also considers compute-intensive ops. In addition, we also try to maximize faster local memory between sub-graph instances. By combining loop fusion and buffer stitching, our implementation generates a single kernel for the sub-graph instance \(b3 \). In contrast, TVM produces one kernel for each layer, increasing the number of generated kernels (65 in total) and thus requiring more off-core data movements.

4.3 Memory Allocation and Reuse

The remaining task is to allocate space at the memory levels defined by scope for each tensor, which is trivial to implement. However, by putting many tensors in the faster local memory, GraphTurbo calls for a careful mechanism to reuse the limited LB’s capacity. We always release the space consumed by an output tensor of a layer/block/sub-graph instance once it is no longer used. The space can thus be reused by other tensors. LB only needs to hold a limited number of tensors simultaneously. In case the total size of these tensors exceed LB’s capacity, the one with the longest liveness across multiple computation tasks is spilled to first GB and next DDR. Fig.12 depicts the liveness of tensors across computation tasks.

Our heuristic is different from prior work [40,46], which always spills the tensor with the largest memory size to lower memory hierarchy levels. Selecting the one with the longest liveness has a higher probability to spill a smaller tensor, which is likely to reduce the overhead of data movements.

4.4 Across-layer Instruction Scheduling

Combining loop fusion and buffer stitching not only produces a single kernel for a sub-graph instance, but also allows for overlaps of different layer computation tasks. On the right of Fig.11, promoting a weight is implemented by first copying its tensor from DDR to GB using DMA and next hoisting the tensor from GB to LB, which is possibly further dispatched.
Figure 12: Liveness of tensors across computation tasks. A (ellipse) computation task (ct) can be a sub-graph instance, a block or a layer. A (rectangle) tensor is live when colored in green or released if in gray. A ct is in execution if colored in yellow or finished when in gray. The space of tensor in1 is released once it is not live, reused by out1. out1 is spilled to GB or DDR in case LB is insufficient to hold four tensors in (d), since it lives across seven cts but others across fewer.

We first discuss how the optimal batch size is selected for a cluster of STCP920 using BERT-128, whose sequence length is 128. Table 1 collects the data for both throughput and latency. We report the results of TVM v0.8 for this model, and also consider the result of highly-crafted C++ implementations provided by the vendor of STCP920, which schedules a computational graph in a similar way to our idea and implements kernel generation by hand.

\begin{align}
 d &\leftarrow 4; c \leftarrow 8; u \leftarrow 3 \\
 LB &\leftarrow 64 \text{ KB L1} \\
 GB &\leftarrow 8\text{MB last local buffer (LLB)} \\
 CU_1 &\leftarrow \text{vector core; } CU_2 \leftarrow \text{VME; } CU_3 \leftarrow \text{MME}
\end{align}

Table 1: Results of BERT-128 under different batch sizes.

<table>
<thead>
<tr>
<th>approach</th>
<th>batch size</th>
<th>configuration</th>
<th>throughput (sentences/s)</th>
<th>latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVM</td>
<td>16</td>
<td>1</td>
<td>512</td>
<td>9.48</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2</td>
<td>512</td>
<td>18.96</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>4</td>
<td>512</td>
<td>37.92</td>
</tr>
<tr>
<td>GraphTurbo</td>
<td>16</td>
<td>1</td>
<td>138</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1</td>
<td>138</td>
<td>9.48</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1</td>
<td>4052</td>
<td>7.67</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>16</td>
<td>2716</td>
<td>23.58</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>2</td>
<td>4052</td>
<td>15.34</td>
</tr>
<tr>
<td>crafted code</td>
<td>16</td>
<td>1</td>
<td>4052</td>
<td>7.62</td>
</tr>
</tbody>
</table>
For TVM, a cluster’s LLB is sufficient to retain four data batches. As allocating four batches to each cluster makes two clusters idle, we allocate two batches to each cluster when the batch size is eight, which obtains a 138 sentences/s throughput and a 6.79ms latency. When the batch size increases to 16, TVM can allocate four batches to each cluster; the throughput and latency grow to 512 sentences/s and 9.48ms, respectively. As TVM cannot allocate more batches to a cluster, the throughput cannot further scale with the growth of the batch size. Instead, TVM introduces a loop execution within each cluster, which guarantees the throughput but the latency increases as proportional to the number of loop iterations.

GraphTurbo performs the same as TVM when the batch size is 8 and 16, since a cluster’s LLB is sufficient to handle the allocated batches and we do not need to create larger sub-graphs or split them. This illustrates that the scheduling of TVM can be considered as a special case of our work. The difference is observed when the batch size increases to 32, for which GraphTurbo allocates eight batches to a cluster but TVM only allocates four. GraphTurbo creates larger sub-graphs and splits them into instances, achieving a higher throughput of 4052 sentences/s and a lower latency of 7.67ms.

When the batch size increases to 64, GraphTurbo allocates 16 batches to each cluster but suffers from both throughput degradation and latency increase, since such a batch allocation requires larger tensors than the implementation in §4.3 spills more of them to slower buffers. In this case, we also introduce a loop execution within a cluster by allocating eight batches to it. As a result, the throughput stays at 4052 sentences/s and the growth of latency is also alleviated when compared with the case of allocating 16 batches to each cluster.

Table 1 also indicates that GraphTurbo achieves very close throughput and latency to the vendor-crafted implementation. In the following context, we report the results of TVM and GraphTurbo by selecting their optimal numbers of allocated batches for a cluster. Both optimal batch allocation strategies are obtained after a round of beforehand autotuning executions. For the sake of simplicity, we discuss throughout numbers below but the results also apply to latency.

5.2 Performance Comparison

We now report the performance. BERT is configured using four sequence lengths, 256, 384 (the default MLPerf configuration), and 512. Table 2 summarizes the configurations of each model. TVM’s throughput is listed in the rightmost column, which is preceded by the throughput units. We show the speedups of each approach over TVM’s data in Fig.14, where we also report the results of AStitch [60].

TVM still fuses ops within a sub-graph and produces kernels that exchange data via DDR, and it also misses the instruction scheduling opportunities across layers. By (1) producing fewer kernels and reducing off-core data movements, (2) better saturating L1, and (3) further exploiting across-layer instruction scheduling, GraphTurbo outperforms TVM by 11.15× on average.

We reproduce the functionality of AStitch for STCP920 by maximally preserving tensors in L1. However, AStitch does not split a sub-graph into instances and thus fails to benefit from the imbalanced memory usage distribution enabled by better schedule orders of sub-graph instances. Hence, GraphTurbo obtains a mean speedup of 6.16× over it. Its performance falls behind that of TVM for ResNet-50 and MobileNet-v2 because AStitch prefers to produce a single kernel for compute-intensive conv ops in these models, which spills data to DDR and results in heavier data movements.

The vendor-crafted implementation considers all the optimization opportunities studied in this paper. Manually optimizing a computational graph can better exploit the trade-off between parallelism, load balance and locality, making crafted code sometimes obtain better performance than GraphTurbo, e.g., for BERT-512 and MobileNet-v2. However, a manual scheduler is also non-trivial and thus sometimes misses the imbalanced memory usage distribution, e.g., for BERT-384. Due to the complexity of such a scheduling strategy, the vendor implementation for the last three models is still under construction till now, and their data are thus missing. On average, GraphTurbo achieves a 1.04× speedup over the vendor-crafted implementation.

5.3 Performance Breakdown

This section studies how different factors contribute to the overall speedup of GraphTurbo over TVM. We consider four variants of GraphTurbo as follows. First, we only keep the outputs of each kernel generated by GraphTurbo in LLB as
The results of the second variant illustrate that converting off-core data movements into on-core data exchanges indeed makes sense. By achieving an average speedup of 3.67× over TVM, the green bars also outperform the red bars, which do not always obtain positive speedups over TVM. This demonstrates the importance of preserving tensors greedily in LB, i.e., L1 of STCP920.

The third variant outperforms the green bars by 2.20× on average. ResNet-50, BERT-256, BERT-512, MobileNet-v2, and DesneNet, that exhibit imbalanced memory usage distribution caused by their down-sampling operations, benefit more from the ordering of sub-graph instances. Other models that either do not have such a network property (BERT-128 and Vision_Transformer) or introduce more concatenation ops than the remaining ones (DLRM) observe insignificant improvements. Finally, across-layer instruction scheduling (§4) obtains a mean speedup of 1.72× over the third variant.

5.4 Hardware Utilization

This section evaluates how effectively GraphTurbo can utilize DSA hardware resources. First, as the core idea is to convert off-core data movements to on-core data exchanges, we investigate how the memory hierarchy of STCP920 is utilized. To this end, we report in Table 3 the frequencies of each memory level that different approaches utilize.

<table>
<thead>
<tr>
<th>label</th>
<th>DRR</th>
<th>L1</th>
<th>L1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%VME</td>
<td>%MME</td>
<td>%VME</td>
</tr>
<tr>
<td>1</td>
<td>58</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>242</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>242</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>512</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>242</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>214</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>247</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1054</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 15: Individual contributions of each optimization.

As the core idea is to convert off-core data movements to on-core data exchanges, we investigate how the memory hierarchy of STCP920 is utilized. To this end, we report in Table 3 the frequencies of each memory level that different approaches utilize.

TVM always puts the output tensors of its sub-graphs in DDR, resulting in abundant off-core data movements. In contrast, GraphTurbo maximizes the utilization of faster local memory, converting many off-core data movements into on-core data exchanges. The vendor-crafted implementation also makes use of the faster local memory. Due to their familiarity with the hardware, the architects of STCP920 sometimes can better manage the memory hierarchy than our heuristics, but this manual scheduler is also tedious.

Second, we evaluate how VME and MME are utilized using ResNet-50 and BERT-128. We report in Fig.16 the data under different batch sizes, with the quantization version of ResNet-50 also considered, to validate the scalability of GraphTurbo. Other models observe similar results. The utilization of both VME and MME increases with the growth of batch size, which is exploited by our work. BERT-128 suffers from a degradation when the batch size changes from 8 to 16, as explained in §5.1.

Figure 16 shows the utilization of VME and MME when executing the four stages in Fig.3a. GraphTurbo performs similar to TVM for stage1, but it outperforms TVM for the other three stages, which demonstrates exploiting the imbalanced memory usage distribution can better utilize hardware resources.

Figure 17 shows the utilization of VME and MME when executing the stages in Fig.3a. GraphTurbo performs similar to TVM for stage1, but it outperforms TVM for the other three stages, which demonstrates exploiting the imbalanced memory usage distribution can better utilize hardware resources.

Figure 17: Utilization VME (left) and MME (right) when executing the stages in Fig.3a. y axis denotes the utilization percentage.

5.5 Comparison of Compilation Overhead

As compilation time is also a major concern for scheduling DNN models, this section reports the compilation overhead of GraphTurbo and compares it with those of the baseline methods. Table 4 reports the data in seconds, which demonstrates that GraphTurbo can achieve better performance than the state of the art without significantly aggravating the compilation overhead.
Table 4: Comparison of compilation overhead in seconds.

<table>
<thead>
<tr>
<th>label</th>
<th>TVM</th>
<th>AStitch</th>
<th>GraphTurbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>102</td>
<td>66</td>
<td>139</td>
</tr>
<tr>
<td>6</td>
<td>159</td>
<td>128</td>
<td>199</td>
</tr>
<tr>
<td>8</td>
<td>170</td>
<td>136</td>
<td>224</td>
</tr>
<tr>
<td>10</td>
<td>312</td>
<td>290</td>
<td>699</td>
</tr>
<tr>
<td>12</td>
<td>171</td>
<td>143</td>
<td>282</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>74</td>
<td>57</td>
<td>248</td>
</tr>
<tr>
<td>18</td>
<td>189</td>
<td>146</td>
<td>340</td>
</tr>
<tr>
<td>20</td>
<td>173</td>
<td>129</td>
<td>189</td>
</tr>
<tr>
<td>22</td>
<td>382</td>
<td>238</td>
<td>296</td>
</tr>
</tbody>
</table>

5.6 Case Study on GPU

We now conduct a case study using the ResNet18-Tailor model to validate that scheduling sub-graph instances can be extended to NVIDIA A100 GPU. We use CUTLASS v2.9 [27] to implement kernel generation, which is compiled using CUDA toolkit v11.4 with -O3 flag. We did not consider the conv and maxpooling ops at the start, and avgpooling and softmax ops at the end of this model since they do not contribute to imbalanced memory usage distribution, like those before and after the stages of Fig. 2. The other layers, each composed of a conv and ReLU ops using a circle, are shown in Fig.18a.

Figure 18: Different schedule orders of ResNet18-Tailor. The numbers define the schedule order of each method.

By expanding a high-level sub-graph into individual low-level ops, XLA [13] does not restrict fusion within layers. Nonetheless, retrieving the high-level information via low-level ops is critical to fuse low-level ops for XLA, and manually forming profitable high-level sub-graphs is considered as

Table 5: Execution time in milliseconds on A100 GPU.

<table>
<thead>
<tr>
<th>batch size</th>
<th>TVM</th>
<th>CUTLASS fusion</th>
<th>graph scheduling</th>
<th>Speedup over</th>
<th>TVM</th>
<th>CUTLASS fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>0.99</td>
<td>0.84</td>
<td>0.83</td>
<td>1.19×</td>
<td>1.01×</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>1.88</td>
<td>1.62</td>
<td>1.50</td>
<td>1.25×</td>
<td>1.08×</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>3.51</td>
<td>3.04</td>
<td>2.83</td>
<td>1.24×</td>
<td>1.07×</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>6.76</td>
<td>5.83</td>
<td>5.44</td>
<td>1.24×</td>
<td>1.07×</td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>1.23×</td>
<td>1.06×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By scheduling sub-graph instances and exploiting GPU registers and shared memory between them, GraphTurbo outperforms TVM by 1.23× on average, which demonstrates that our idea is also useful on GPU. GraphTurbo also achieves a mean speedup of 1.06× over CUTLASS, because scheduling sub-graph instances also brings about benefits by exposing and exploiting imbalanced memory usage distribution.

The reasons why the performance improvements on GPU is not promising as on STCP920 are two-folded. On the software side, GraphTurbo can construct a larger sub-graph that contains more than two layers, but CUTLASS, which we use for kernel generation here, refused to accept three or more conv layers. Enhancing the kernel generator of TVM in the future can address this issue. We also did not apply instruction scheduling here. On the hardware side, the higher memory bandwidth of this GPU also makes the improvements caused by reducing off-core data movements not significant as on STCP920. While STCP920 only delivers a memory bandwidth of 136GB/s, this GPU can reach more than 1500GB/s.

Nonetheless, other NVIDIA software-defined platforms with limited memory bandwidth, e.g., NVIDIA DRIVE AGX Orin [36], could benefit from GraphTurbo. We also believe that the software-controlled inter-operative-thread-array shared memory of the latest NVIDIA H100 GPU could be better exploited by the idea presented in this paper. Hence, our work also offers insights to the GPU micro-architectures.

6 Related Work

Scheduling its computational graph is the first step to deploy a DNN model on platforms. The difference between our scheduler and prior work is that we consider hardware architecture when grouping sub-graphs, which enables the synergy between network architecture and DSA, while existing methods [13, 19, 44, 49] not. By generating coarser-grained sub-graphs and splitting them into instances, GraphTurbo exposes the imbalanced memory usage distribution, a network property first studied by MCUNetV2 [30]. However, MCUNetV2 only discusses tiny DNN models on microcontroller units, while this paper considers large-scale DNN models and targets a cloud DSA chip. Some optimizations that can only be implemented when sub-graphs are lowered to loop nest pipelines are not considered by MCUNetV2 but studied in §4.

When a sub-graph is lowered to a loop nest pipeline, existing methods like TVM [5] fuse loop nests with the help of manually written schedule templates. As TVM does not scale well with the increase of op numbers within a sub-graph, we only use TVM’s loop fusion to group loop nests within a layer. Our implementation also avoids the need to manually write schedule templates and inject memory promotion statements of weight tensors, the later of which is automated by interacting with the graph scheduler.

By expanding a high-level sub-graph into individual low-level ops, XLA [13] does not restrict fusion within layers. Nonetheless, retrieving the high-level information via low-level ops is critical to fuse low-level ops for XLA, and manually forming profitable high-level sub-graphs is considered as
more robust than through automatic pattern matching in this compiler [45]. GraphTurbo fully automates this process and achieves better performance than AStitch, which has already been demonstrated as superior to XLA [60].

IREE [20] is another work that makes use of its graph scheduling logic when communicating data between low-level parallel pipelined hardware/APIs. Our work differs from IREE by focusing on scheduling instances of larger subgraphs, which tends to produce fewer kernels. By managing an internal map of op sequence on the fly, Zero-Infinity [42] exploits the fine-grained overlaps by prefetching the parameters required by future ops during the execution of the current op. A layer considered by our work usually includes multiple ops, the execution of which is more likely to fully hide the data transfer overhead.

Some autotuning frameworks [6, 57, 59] are also devised to enhance the power of TVM with fewer or no hand-written schedule templates. These autotuners use their search heuristics to tune memory optimizations to further improve the performance of their generated code. Unfortunately, their search spaces are all restricted within layers [39], while our work enables across-layer instruction scheduling (§4.4). In particular, Anisor [57] represents the state of the art of this kind, which is orthogonal to our work by neither considering the scheduling of GraphTurbo nor exploiting the fusion possibilities of multiple conv/matrix multiplication operators. Loop fusion is also investigated by polyhedral frameworks [3, 47, 54], but they did not consider buffer stitching that has been discussed in §4.2. Similar to GraphTurbo, DNNFusion [34] also studies across-layer fusion for mobile devices. We fail to obtain its repository to conduct an experimental comparison.

Another thread of works [10, 28, 35] investigate horizontal fusion between ops with no producer-consumer relations to better utilize the hardware resources of their targets. GraphTurbo tackles the same issue using a different idea. Our scheduler exploits parallelism within a sub-graph instance, which is always homogeneous to other instances of the same subgraph. It always decomposes one or multiple dimensions of a tensor to exploit parallelism. On the contrary, ops grouped by horizontal fusion are heterogeneous, which calls for a more complicated parallelization mechanism.

The distinction between our work and these approaches is that GraphTurbo partitions a sub-graph along one output tensor’s dimension while these methods partition tensors by tiles along multiple dimensions. The primary reason why GraphTurbo does this way is because cores in the DSA abstraction of Fig.1 are organized in 1D form. For instance, this level corresponds to 32 hardware cores sharing the shared memory of GPU. The partitioning approach of GraphTurbo is also extensible to deal with a multi-dimensional core grid organization by gradually partitioning and mapping multiple loop dimensions to these hardware dimensions. Moreover, as their targets share the DSA abstraction in Fig.1, the idea presented in this paper could also be used on their targets.

7 Conclusion

GraphTurbo is a scheduler for DNN models that enables the synergy between network and hardware architectures. This significant difference from prior work produces fewer kernels and thus reduces off-core data movements, better saturates faster local memory of DSA platforms by exploiting the imbalanced memory usage distribution, and opens opportunities for across-layer instruction scheduling. Results of seven DNN models demonstrate the effectiveness of our idea, whose applicability to GPU is also discussed.

GraphTurbo obtains sub-graph instances by selecting an appropriate size to split a DNN computation graph. Indeed, selecting the optimal size to perfectly model a DSA’s memory hierarchy is challenging, and only making use of LB in Fig.1 is not the optimal solution. Instead, our method is just a greedy idea that has been demonstrated effective when compared with vendor-crafted implementation, which we believe can be considered as a good result. A more intelligent approach can be explored to catch up or even beat the performance obtained by hand for models like BERT-512 and MobileNet-v2.

GraphTurbo currently has two limitations. First, the optimal batch size for a cluster is still selected by a simple autotuning approach. We intend to develop an intellectual technique to better address this issue. Second, GraphTurbo cannot handle dynamically shaped tensors. Integrating with the recent methods [12, 56] along this direction may alleviate this issue.

Acknowledgments

We acknowledge Hyeontaek Lim for his shepherding and the OSDI’23 reviewers for their constructive comments that improve the quality of this work. We would also like to express our gratitude to Bojie Li and Jun Yang for their suggestions on the early versions of this paper. Zhongzhou Jiang, Yuqing Wang, Di Mei, and many other toolchain team members of the Streaming Computing Inc. for their help during the use of their vendor-crafted implementation. Jie Zhao and Xiaoqiang Dan are the corresponding authors of this paper, and the work of Jie Zhao is partly supported by the National Natural Science Foundation of China under Grant No. U20A20226. The views and conclusions presented in this paper belong to the authors. Interpreting them as the official policies of the Chinese Government in any way is not acceptable.
References

