A polyhedral compilation framework for loops with

dynamic data-dependent bounds

Jie Zhao and Albert Cohen
INRIA & Ecole Normale Supérieure

45 rue d'Ulm, 75005 Paris

7th International Workshop on Polyhedral Compilation Techniques
(IMPACT 2017)
Stockholm, Sweden

January 23, 2017

January 23, 2017 1/26

© Introduction
@ Motivation
@ Examples

© Polyhedral compilation of dynamic counted loops
@ Schedule tree
@ Program analysis
o Code generation

© Experimental results
@ HOG descriptor
@ SpMV computations
@ Inspector-executor codes

@ Conclusion

January 23, 2017 2 /26

Outline

© Introduction
@ Motivation
@ Examples

Introduction January 23, 2017 3/26

What are dynamic counted loops?

Introduction Motivation January 23, 2017 4 /26

What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are regular
counted loops with numerical constant strides, whose lower and/or upper
bound may not be an affine function of enclosing loop counters and
loop-invariant parameters.

Introduction Motivation January 23, 2017 4 /26

What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are regular
counted loops with numerical constant strides, whose lower and/or upper
bound may not be an affine function of enclosing loop counters and
loop-invariant parameters.

for (i=0; i<N; i++) {
S0: m = condition; // dynamically computed upper bound
for (j=0; j<m; j++)
SHIE Sk

Introduction Motivation January 23, 2017 4 /26

Why are we interested in the class of loop nest kernels involving dynamic
counted loops?

Introduction Motivation January 23, 2017 5/ 26

Why are we interested in the class of loop nest kernels involving dynamic
counted loops?

» dynamic counted loops are less expressive than general while
loops.

> Less expressive/general control flow enables more aggressive
optimizations.

» Building on the state of the art polyhedral optimization of while
loops by Benabderrahmane et al. [BPCB10], but the authors’ efficient
code generation algorithm is not completely described.

» [BPCB10] is constrained by inductive dependences on exit conditions
which limit affine transformations and parallelization.

Introduction Motivation January 23, 2017 5/ 26

An illustrative example

for (i=0; i<N; i++) {

SO: condition = 8
while (condition) {
S1: condition = ...;
S2: S;
¥
}

A general while loop

Introduction

for (i=0; i<N; i++) {
SO: m = condition;
for (j=0; j<m; j++)
S1: S;

A dynamic counted loop

Examples January 23, 2017 6 /26

An illustrative example

for (i=0; i<N; i++) {

SO: condition = 8
while (condition) {
S1: condition = ...;
S2: S;
¥
}

A general while loop

€s0—*s1

esp s C

®

Introduction

for (i=0; i<N; i++) {
SO: m = condition;
for (j=0; j<m; j++)
S1: S;

A dynamic counted loop

Examples January 23, 2017 6 /26

An illustrative example

for (i=0; i<N; i++) {

SO: condition = 8
while (condition) {
S1: condition = ...;
S2: S;
¥
}

A general while loop

€s0—*s1

esp s C

®

Introduction

for (i=0; i<N; i++) {
SO: m = condition;
for (j=0; j<m; j++)
S1: S;

A dynamic counted loop

€sg—s1

Examples January 23, 2017 6 /26

More examples

for (i=0; i<N; i++) {
S0: m = f£(i);
S1: n = g(i); for (i=0; i<N; i++) {
for (j=0; j<m; j++) SO0: m = f(i);
for (k=0; k<n; k++) for (j=0; j<m; j++)
S2: S(i, j, k); S1: S(i, j);
} ¥
Histogram of Oriented Gradients (HOG) Sparse matrix-vector CSR
for (k=0; k<2xM-1; k++) { for (i=0; i<N; i++) {
S0: m = f(k); SO0: m = f(i, K);
for (i=0; i<m; i++) { for (jj=0; jj<m; jj++) {
S1: n = g(i); Sl g n = g(i, jj, K);
for (j=0; j<m; j++) for (j=0; j<m; j++)
S2: S(k, i, j); S2: SCGi, ji, 3);
} }
} }
Sparse matrix-vector DIA Sparse matrix-vector ELL
CSR: compressed sparse row DIA: diagonal ELL: ELLPack.
Introduction Examples January 23, 2017 7 /26

More examples

for (i=0; i<N; i++) {
S0: m = f£(i);
S1: n = g(i); for (i=0; i<N; i++) {
for (j=0; j<m; j++) SO: m = f£(i);
for (k=0; k<n; k++) for (j=0; j<m; j++)
S2: S(i, j, k); S1: S(i, j);
} }
Histogram of Oriented Gradients (HOG) Sparse matrix-vector CSR
for (k=0; k<2xM-1; k++) { for (i=0; i<N; i++) {
S0: m = f(k); SO0: m = f(i, K);
for (i=0; i<m; i++) { for (jj=0; jj<m; jj++) {
S1: n = g(i); S1: n = g(i, jj, K);
for (j=0; j<m; j++) for (j=0; j<n; j++)
S2: S(k, i, j); S2: SCi, ji, i)
} }
} }
Sparse matrix-vector DIA Sparse matrix-vector ELL
CSR: compressed sparse row DIA: diagonal ELL: ELLPack.
Introduction Examples January 23, 2017 7 /26

Outline

© Polyhedral compilation of dynamic counted loops
@ Schedule tree
@ Program analysis
o Code generation

Polyhedral compilation of dynamic counted loops January 23, 2017 8 /26

Schedule tree (in isl)

domain
|

context: [u]
{So(); S1(7,J)}
So(i) = (1); Su(i,j) — (i)
sequence

i) (S i< u

Si(i,J) = ()

Polyhedral compilation of dynamic counted loops Schedule tree January 23, 2017 9 /26

Schedule tree (in isl)

domain
|

context: [u]
{So(1): S1(7,1)}
So(i) = (1); Su(i,) — (i)

sequ‘ence

/ =~

So(i) {S1(i,j) 1 j < u}
@ Core node types Sl(l',j)‘ = ()
» Band: multi-dimensional piecewise quasi-affine partial schedule

> Filter: selects statement instances that are executed by descendants
» Sequence/Set: children executed in given/arbitrary order

Polyhedral compilation of dynamic counted loops Schedule tree January 23, 2017 9 /26

Schedule tree (in isl)

domain
|

context: [u]
{So(); S1(7,J)}
So(i) = (1): S1(i,j) — (i)

|
sequence

/ =~
So(7) {S1(i,4) 1j < u}
@ Core node types 51(i7j)‘ - ()

» Band: multi-dimensional piecewise quasi-affine partial schedule
> Filter: selects statement instances that are executed by descendants
» Sequence/Set: children executed in given/arbitrary order

@ “External” node types

» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants

Polyhedral compilation of dynamic counted loops Schedule tree January 23, 2017 9 /26

Schedule tree (in isl)

domain
|

context: [u]
{So(); S1(7,J)}
So(i) = (1); Su(i,j) — (i)

|
sequence

/ =~
So(7) {S1(i,4) 1j < u}
@ Core node types 51(i7j)‘ - ()

» Band: multi-dimensional piecewise quasi-affine partial schedule
> Filter: selects statement instances that are executed by descendants
» Sequence/Set: children executed in given/arbitrary order
@ “External” node types
» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants
@ Convenience node types
» Mark: attach additional information to subtrees

Polyhedral compilation of dynamic counted loops Schedule tree January 23, 2017 9 /26

Program analysis

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26

Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.
» Synthesize static upper bounds (static analysis or dynamic inspector).

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26

Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.
» Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {
for (j=idx[il; j<idx[i+11; j++)
S1: S{i, j);

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26

Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.

» Synthesize static upper bounds (static analysis or dynamic inspector).
for (i=0; i<N; i++) {

for (i=0; i<N; i++) { SO: m = idx[i+1] - idx[i];
for (j=idx[il; j<idx[i+1]; j++) for (j=0; j<m; j++)
S1: S(i, j); S1: S(i, j+idx[il);
} }

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26

Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.

» Synthesize static upper bounds (static analysis or dynamic inspector).
for (i=0; i<N; i++) {

for (i=0; i<N; i++) { SO: m = idx[i+1] - idx[i];
for (j=idx[il; j<idx[i+1]; j++) for (j=0; j<m; j++)
S1: S{i, j); S1: S(i, j+idx[il);
} }

@ Modeling control dependences
> Insert an exit predicate definition and check at the beginning of each
iteration of a dynamically counted loop.
» Delay the introduction of break instructions until code generation to
keep the control flow in a manageable form for a polyhedral compiler.

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26

Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.

» Synthesize static upper bounds (static analysis or dynamic inspector).
for (i=0; i<N; i++) {

for (i=0; i<N; i++) { SO: m = idx[i+1] - idx[i];
for (j=idx[il; j<idx[i+1]; j++) for (j=0; j<m; j++)
S1: S{i, j); S1: S(i, j+idx[il);
} }

@ Modeling control dependences
> Insert an exit predicate definition and check at the beginning of each
iteration of a dynamically counted loop.
» Delay the introduction of break instructions until code generation to

keep the control flow in a manageable form for a polyhedral compiler.
for (i=0; i<N; i++) {
SO0: m = idx[i+1] - idx[il;
for (j=0; j<m; j++)
S1: if (j<m)
S(i, j+idx[il);

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
S1: if (j<m) S1: if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain

|
context: [u]

(So(i); S1(1,)}
So(i) = (i); S1(i,j) — (i)

|
sequence

So(i) g {Sl?i,j) 1j < u}
S1(i,4) = ()

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain

|
context: [u]

{So(i); lsl(i:j)}
[5o(i) = (1) S1(i-J) = ()]

Sequence
So) {Si(iJ) 1 j <)
S = 0)

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain domain
| |
context: [u] context: [u]
| |
{So(i); S1(i,4)} {S0(i,j): $1(i,4)}
| |
So(i) = (i) Su(i,j) — (i) So(i,g) = (i) S1(i,J) — (i) So(i,J) — (); S1(4,J) — ()
| |
sequence mark: " dynamic_counted_loop([j],j < u)”
~ ~
So(i) {S1(4,j) : j < u} sequ‘ence
| - ~

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain domain
| |
context: [u] context: [u]
| |
{So(i); S1(7,4)} {So(i,4): S1(i,4)}
| 1
So(i) = (I 516.0) = () [So(id) = (1 1(i.d) = (1) So(id) = G): S1(i-d) = G)]
| T
iaquenc\e mark: " dynamic_counted_loop([j],j < u)"
So(i) {S1(1,j) 1 j < u} sequ‘ence
| ~ ~

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain domain
| |
context: [u] context: [u]
| |
{S0(i); S1(i,4)} {S0(i,4); S1(i,J)}
| 1
So(i) = (9 S10d) = () [Soliod) = (0 S1(0d) = (0 Solind) = G)i S1d) =)]
| T
iaquenc\e mark: " dynamic_counted_loop([j],j < u)"
So(i) {51(4,j) : j < u} sequ‘ence
| ~ ~

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 11 /26

Code generation

Polyhedral compilation of dynamic counted loops Code generation January 23, 2017 12 /26

Code generation

@ About the general applicability of affine transformations
» by default, resort to unoptimized exit-predicated execution with static

upper bounds
» simple yet optimized code generation template for tiling, strip mining,

skewing, interchange.
» the template does not apply to fusion and reversal.

January 23, 2017 12 /26

Code generation

Polyhedral compilation of dynamic counted loops

Code generation

@ About the general applicability of affine transformations
» by default, resort to unoptimized exit-predicated execution with static

upper bounds
» simple yet optimized code generation template for tiling, strip mining,

skewing, interchange.
» the template does not apply to fusion and reversal.

o Code generation

January 23, 2017 12 /26

Code generation

Polyhedral compilation of dynamic counted loops

Code generation

@ About the general applicability of affine transformations
» by default, resort to unoptimized exit-predicated execution with static

upper bounds
» simple yet optimized code generation template for tiling, strip mining,

skewing, interchange.
» the template does not apply to fusion and reversal.

o Code generation
domain
conte;(t: [u]
{5007, $1,)}
[S0(7-) = (3 :(0-) = () Sli) > 03 5(0-) = 0)]

mark: " dynamic_counted_loop([j],j < u)”

|
sequence
~ ~N

So(i,J) S1(i,4)

Code generation January 23, 2017

Polyhedral compilation of dynamic counted loops

Code generation

The code generation template

for (i=0; i<N; i++)
for (j=0; j<ul; j++) {
for (k=0; k<u2; k++) {

for (...) {
SO: m = f£(i);
S1: n = g(i);
Sn: if (j<m&&k<n&&...)
S(i, j, k, ...);
}
if (k>=n)
break;
}
if (j>=m)
break;

Code generation

Polyhedral compilation of dynamic counted loops

January 23, 2017

Code generation

The code generation template

for (i=0; i<N; i++)
for (j=0; j<ul; j++) {
for (k=0; k<u2; k++) {

for (...) {
SO : m = f(i);
S1: n = g(i);
Sn: if (j<m&&k<n&&...)

S(i, j, k, ...);

}
if (k>=n)
break;
}
if (j>=m)
break;

January 23, 2017 13 /26

Code generation

Polyhedral compilation of dynamic counted loops

Code generation

SpMV CSR code

for (i=0; i<N; i++)
for (j=0; j<u; j++) {
SO0: m = idx[i+1] - idx[i];
S1: if (j<m)
y[il += A[jl*x[col[jI11;

Polyhedral compilation of dynamic counted loops Code generation January 23, 2017 14 / 26

Code generation

SpMV CSR code for (i=0; i<N; i++)
for (j=0; j<u; j++) {

for (i=0; i<N; i++) SO0: m = idx[i+1] - idx[il;

for (j=0; j<u; j++) { S1: if (j<m)
SO: m = idx[i+1] - idx[i]; y[i] += A[jl*x[coll[jl];
S1: if (j<m) if (j>=m)

y[il += A[jl*x[coll[jl]; break;
} }

Polyhedral compilation of dynamic counted loops Code generation January 23, 2017 14 / 26

Code generation

SpMV CSR code

for (i=0; i<N; i++)

for (j=0; j<u; j++) {
SO0: m = idx[i+1] - idx[i];

S1: if (j<m)

y[il += A[jl*x[coll[jll;

for (ii=32*b0; ii<N;

for (jj=32*bl; jj<u;

for (i=t0; i<=min(31,N-ii);
for(j=tl; i<=min(31,u-jj);

SO: m = idx[ii+i+1]

S1: if (jj+j<m)

for (i=0;

i<N; i++)

for (j=0; j<u; j++) {

SO0: m =

idx[i+1] - idx[i];

S1: if (j<m)

y[il += A[jl*x[col[jl];

if (j>=m)
break;

ii+=8192)
jj+=8192) {

i+=32)
i+=32) {
idx[ii+i];

y[ii+i] += A[jj+jl*x[coll[jj+jll;

if (jj+j>=m)
break;
}
if (jj>=m)
break;

Polyhedral compilation of dynamic counted loops

Code generation

January 23, 2017

14 / 26

© Experimental results
@ HOG descriptor
@ SpMV computations
@ Inspector-executor codes

Experimental results

January 23, 2017

15 / 26

HOG descriptor

Performance of the HOG descriptor including data transfer time!

I PPCG mm Our work ‘ 21.92 22.86
19.64
20 -
X
[o% 11.57
=]
§ 10 |- -
o
n 4.62
0.9153 0.21¢i57 o.l 0.3 0.2 0.2 0.2
O | — - - - - - - .
16 32 64 128 256 512 1024
BLOCK_SIZE

'Running on NVIDIA Quadro K4000 GPU with Intel Xeon E5-2630-CPU

Experimental results HOG descriptor January 23, 2017 16 / 26

HOG descriptor

Performance of the HOG descriptor including data transfer time!

I PPCG mm Our work ‘ 21.92 22.86
19.64
20
x
a 11.57
3
3 10 |
o
n 4.62
1,57
0.9153 0.2 o.l 0.3 0.2
XTI ST Y
16 32 64 128 256 1024
BLOCK_SIZE

Our work enables the effective parallelization and optimization of HOG on
the target platform, outperforming sequential execution and PPCG’s inner
parallelism version (total execution time including data transfers)

'Running on NVIDIA Quadro K4000 GPU with Intel Xeon E5-2630-CPU

Experimental results HOG descriptor January 23, 2017 16 / 26

HOG descriptor

Performance of the HOG descriptor without data transfer time?

I PPCG I Our work ‘ 23.28 .02 23.23
20 .
16.8
x
o
3
k) 10 9.11 .
o
[92]
4.41 4.65
0.3I 0.3I 0.3 0.3 0.2 0.2 0.2
0 | - - - - - - - |
16 32 64 128 256 510 1024
BLOCK_SIZE

2The performance is the speedup w.r.t. the sequential execution time

Experimental results HOG descriptor January 23, 2017 17 / 26

SpMV computations

CUDA vs. sequential execution time of CSR SpMV3

I Sequential M CUDA
") 6
£
~~
£
.; 47
c
.0
5
0 20 I I
(9]
‘ 1114 I
N | il . 1.
QO
O N
éo ~ < . G)OQ \’\\0
& & ’9? og’& q,sz \‘,X\ Qo\(, & S
& & R Iy ¢ o RO
< oF Q & &
2 Q x§
N

®Based on the University of Florida sparse matrix collection [DH11]

Experimental results SpMV computations

January 23, 2017 18 / 26

SpMV computations

CUDA vs. sequential execution time of DIA SpMV

I Sequential [CUDA
400 -1
"
~~
[
£
=
c
.0 200 =
B
3
| I
x
] I
| Hm I e nl. |
Q
™ g)Q AN _L(’) (900
¢ & o5 SIS g &
%2 oo(‘ ooQ eo @& N &’ Q
& N Q¥
&

Experimental results SpMV computations January 23, 2017 19 / 26

SpMV computations

CUDA vs. sequential execution time of ELL SpMV

8 | I Sequential Ml CUDA ‘ -

£ 6 i
~
[}
E
5

c 4 |
.
5
3
3

é 2 I I I I II |

.. 1l I I I nill e] I- |

QO
N N
F 5+ © ©
X bel S Qe A - Q N
N Q'I«Q o«\"‘ &bz X0 & @'DQ
c e & < ng @(,9/ < N &
F] <0

Experimental results SpMV computations January 23, 2017 20 / 26

Inspector-executor codes

An inspector-executor implementation of CSR SpMV

for (i=0; i<M; i++) {
for (k=0; k<N; k++) {
marked = false;
for (j=idx[il]; j<idx[i+1]; j++)
if (k == coll[jl)
if (!marked) {
marked = true;
exp_idx [count] = k;
count++;
}
}
f_idx[i+1] = count;
} .
Inspector

for (i=0; i<N; i++) {
m = f_idx[i+1] - f_idx[i];
for (j=0; j<m; j++)
if (j<m)
y[i]l += val[j+f_idx[i]] * x[exp_idx[j+£f_idx[i]1]1];

executor

Experimental results Inspector-executor codes January 23, 2017 21/ 26

CUDA vs. sequential execution time of the CSR SpMV executor

N Sequential [CUDA ‘
67 .
%]
£
~
£
£ 41 |
c
.0
-
3
é | I I I I
] II I
. Hl I I 1l .. III |
QO
N N
b‘t) . o o'(\ O
X byl & e A - Q X
N Q'19 o«\"‘ &be' X0 & éé’bQ
<8 & & ng «e?%/ < <& &
F] <2

Experimental results Inspector-executor codes January 23, 2017 22 /26

CUDA vs. sequential execution time of the ELL SpMV executor

Execution time/ms

15

10

o1

Experimental results

I Sequential [CUDA ‘

QQ
¥ sso & &
& NS K R RS Qo\"’ N ,Z',\,Q R
¢ R Iy) o R & &
R% N & &0@

Inspector-executor codes

January 23, 2017

23 / 26

Outline

@ Conclusion

Conclusion January 23, 2017 24 / 26

Conclusion

@ Our work

@ Future work

Conclusion January 23, 2017 25/ 26

Conclusion

@ Our work

» models control dependences on data-dependent predicates by revisiting
the work of Benabderrahmane et al. [BPCB10].

» does not resort to more expressive first-order logic with non-interpreted
functions/predicates, like [SCF03, SLC*16].

» provides code generation templates for multiple scenarios, including the
inspector-executor scheme [VHS15].

@ Future work

Conclusion January 23, 2017 25/ 26

Conclusion

@ Our work
» models control dependences on data-dependent predicates by revisiting
the work of Benabderrahmane et al. [BPCB10].
» does not resort to more expressive first-order logic with non-interpreted
functions/predicates, like [SCF03, SLC*16].
» provides code generation templates for multiple scenarios, including the
inspector-executor scheme [VHS15].
o Future work
» fully automate and implement the framework in PPCG [VCJC'13].
» conduct further experiments on CPU and GPU platforms, comparing
the performance with the CUSP library.

Conclusion January 23, 2017 25/ 26

References

» Mohamed-Walid Benabderrahmane, Louis-Noél Pouchet, Albert Cohen, and Cédric Bastoul.
The polyhedral model is more widely applicable than you think.
In Proceedings of 19th International Conference on Compiler Construction (CC), pages 283-303. Springer, 2010.

> Timothy A Davis and Yifan Hu.
The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1:1-1:25, 2011

> Michelle Mills Strout, Larry Carter, and Jeanne Ferrante.
Compile-time composition of run-time data and iteration reorderings.
ACM SIGPLAN Notices, 38(5):91-102, 2003.

P Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck, and Catherine Olschanowsky.
An approach for code generation in the sparse polyhedral framework.
Parallel Computing, 53:32-57, 2016

> Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gémez, Christian Tenllado, and Francky Catthoor.
Polyhedral parallel code generation for cuda.
ACM Transactions on Architecture and Code Optimization (TACO), 9(4):54, 2013.

» Anand Venkat, Mary Hall, and Michelle Strout.
Loop and data transformations for sparse matrix code.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pages 521-532, 2015

Conclusion

	Introduction
	Motivation
	Examples

	Polyhedral compilation of dynamic counted loops
	Schedule tree
	Program analysis
	Code generation

	Experimental results
	HOG descriptor
	SpMV computations
	Inspector-executor codes

	Conclusion

