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What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are regular
counted loops with numerical constant strides, whose lower and/or upper
bound may not be an affine function of enclosing loop counters and
loop-invariant parameters.
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What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are regular
counted loops with numerical constant strides, whose lower and/or upper
bound may not be an affine function of enclosing loop counters and
loop-invariant parameters.

for (i=0; i<N; i++) {
S0: m = condition; // dynamically computed upper bound
for (j=0; j<m; j++)
SHIE Sk
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Why are we interested in the class of loop nest kernels involving dynamic
counted loops?
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Why are we interested in the class of loop nest kernels involving dynamic
counted loops?

» dynamic counted loops are less expressive than general while
loops.

> Less expressive/general control flow enables more aggressive
optimizations.

» Building on the state of the art polyhedral optimization of while
loops by Benabderrahmane et al. [BPCB10], but the authors’ efficient
code generation algorithm is not completely described.

» [BPCB10] is constrained by inductive dependences on exit conditions
which limit affine transformations and parallelization.
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An illustrative example

for (i=0; i<N; i++) {

SO: condition = 8
while (condition) {
S1: condition = ...;
S2: S;
¥
}

A general while loop
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SO: m = condition;
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More examples

for (i=0; i<N; i++) {
S0: m = f£(i);
S1: n = g(i); for (i=0; i<N; i++) {
for (j=0; j<m; j++) SO0: m = f(i);
for (k=0; k<n; k++) for (j=0; j<m; j++)
S2: S(i, j, k); S1: S(i, j);
} ¥
Histogram of Oriented Gradients (HOG) Sparse matrix-vector CSR
for (k=0; k<2xM-1; k++) { for (i=0; i<N; i++) {
S0: m = f(k); SO0: m = f(i, K);
for (i=0; i<m; i++) { for (jj=0; jj<m; jj++) {
S1: n = g(i); Sl g n = g(i, jj, K);
for (j=0; j<m; j++) for (j=0; j<m; j++)
S2: S(k, i, j); S2: SCGi, ji, 3);
} }
} }
Sparse matrix-vector DIA Sparse matrix-vector ELL
CSR: compressed sparse row DIA: diagonal ELL: ELLPack.
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More examples

for (i=0; i<N; i++) {
S0: m = f£(i);
S1: n = g(i); for (i=0; i<N; i++) {
for (j=0; j<m; j++) SO: m = f£(i);
for (k=0; k<n; k++) for (j=0; j<m; j++)
S2: S(i, j, k); S1: S(i, j);
} }
Histogram of Oriented Gradients (HOG) Sparse matrix-vector CSR
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for (i=0; i<m; i++) { for (jj=0; jj<m; jj++) {
S1: n = g(i); S1: n = g(i, jj, K);
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Schedule tree (in isl)

domain
|

context: [u]
{So(); S1(7,J)}
So(i) = (1); Su(i,j) — (i)
sequence

i) (S i< u

Si(i,J) = ()
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Schedule tree (in isl)

domain
|

context: [u]
{So(1): S1(7,1)}
So(i) = (1); Su(i, ) — (i)

sequ‘ence

/ =~

So(i) {S1(i,j) 1 j < u}
@ Core node types Sl(l',j)‘ = ()
» Band: multi-dimensional piecewise quasi-affine partial schedule

> Filter: selects statement instances that are executed by descendants
» Sequence/Set: children executed in given/arbitrary order
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Schedule tree (in isl)

domain
|

context: [u]
{So(); S1(7,J)}
So(i) = (1): S1(i,j) — (i)

|
sequence

/ =~
So(7) {S1(i,4) 1j < u}
@ Core node types 51(i7j)‘ - ()

» Band: multi-dimensional piecewise quasi-affine partial schedule
> Filter: selects statement instances that are executed by descendants
» Sequence/Set: children executed in given/arbitrary order

@ “External” node types

» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants

Polyhedral compilation of dynamic counted loops Schedule tree January 23, 2017 9 /26



Schedule tree (in isl)

domain
|

context: [u]
{So(); S1(7,J)}
So(i) = (1); Su(i,j) — (i)

|
sequence

/ =~
So(7) {S1(i,4) 1j < u}
@ Core node types 51(i7j)‘ - ()

» Band: multi-dimensional piecewise quasi-affine partial schedule
> Filter: selects statement instances that are executed by descendants
» Sequence/Set: children executed in given/arbitrary order
@ “External” node types
» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants
@ Convenience node types
» Mark: attach additional information to subtrees
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Program analysis
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Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.
» Synthesize static upper bounds (static analysis or dynamic inspector).
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Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.
» Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {
for (j=idx[il; j<idx[i+11; j++)
S1: S{i, j);
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Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.

» Synthesize static upper bounds (static analysis or dynamic inspector).
for (i=0; i<N; i++) {

for (i=0; i<N; i++) { SO: m = idx[i+1] - idx[i];
for (j=idx[il; j<idx[i+1]; j++) for (j=0; j<m; j++)
S1: S(i, j); S1: S(i, j+idx[il);
} }
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Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.

» Synthesize static upper bounds (static analysis or dynamic inspector).
for (i=0; i<N; i++) {

for (i=0; i<N; i++) { SO: m = idx[i+1] - idx[i];
for (j=idx[il; j<idx[i+1]; j++) for (j=0; j<m; j++)
S1: S{i, j); S1: S(i, j+idx[il);
} }

@ Modeling control dependences
> Insert an exit predicate definition and check at the beginning of each
iteration of a dynamically counted loop.
» Delay the introduction of break instructions until code generation to
keep the control flow in a manageable form for a polyhedral compiler.

Polyhedral compilation of dynamic counted loops Program analysis January 23, 2017 10 / 26



Program analysis

@ Preprocessing
» Subtract (dynamic) lower bounds.

» Synthesize static upper bounds (static analysis or dynamic inspector).
for (i=0; i<N; i++) {

for (i=0; i<N; i++) { SO: m = idx[i+1] - idx[i];
for (j=idx[il; j<idx[i+1]; j++) for (j=0; j<m; j++)
S1: S{i, j); S1: S(i, j+idx[il);
} }

@ Modeling control dependences
> Insert an exit predicate definition and check at the beginning of each
iteration of a dynamically counted loop.
» Delay the introduction of break instructions until code generation to

keep the control flow in a manageable form for a polyhedral compiler.
for (i=0; i<N; i++) {
SO0: m = idx[i+1] - idx[il;
for (j=0; j<m; j++)
S1: if (j<m)
S(i, j+idx[il);
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
S1: if (j<m) S1: if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain

|
context: [u]

(So(i); S1(1, )}
So(i) = (i); S1(i,j) — (i)

|
sequence

So(i) g {Sl?i,j) 1j < u}
S1(i,4) = ()
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain

|
context: [u]

{So(i); lsl(i:j)}
[5o(i) = (1) S1(i-J) = ()]

Sequence
So) {Si(iJ) 1 j < )
S = 0)
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain domain
| |
context: [u] context: [u]
| |
{So(i); S1(i,4)} {S0(i,j): $1(i,4)}
| |
So(i) = (i) Su(i,j) — (i) So(i,g) = (i) S1(i,J) — (i) So(i,J) — (); S1(4,J) — ()
| |
sequence mark: " dynamic_counted_loop([j],j < u)”
~ ~
So(i) {S1(4,j) : j < u} sequ‘ence
| - ~
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain domain
| |
context: [u] context: [u]
| |
{So(i); S1(7,4)} {So(i,4): S1(i,4)}
| 1
So(i) = (I 516.0) = () [So(id) = (1 1(i.d) = (1) So(id) = G): S1(i-d) = G)]
| T
iaquenc\e mark: " dynamic_counted_loop([j],j < u)"
So(i) {S1(1,j) 1 j < u} sequ‘ence
| ~ ~
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Program analysis

@ Schedule generation
> Apply any affine transformation, e.g., a variant of the Pluto algorithm.
> Insert a mark node below each band node associated with a
dynamically counter loop.

for (i=0; i<N; i++) { for (i=0; i<N; i++)
S0: m = idx[i+1] - idx[i]; for (j=0; j<u; j++) {
for (j=0; j<m; j++) S0: m = idx[i+1] - idx[il;
SHE: if (j<m) SHEE if (j<m)
S(i, j+idx[il); S(i, j+idx[il);
} }
domain domain
| |
context: [u] context: [u]
| |
{S0(i); S1(i,4)} {S0(i,4); S1(i,J)}
| 1
So(i) = (9 S10d) = () [Soliod) = (0 S1(0d) = (0 Solind) = G)i S1d) = )]
| T
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So(i) {51(4,j) : j < u} sequ‘ence
| ~ ~
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Code generation
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Code generation

@ About the general applicability of affine transformations
» by default, resort to unoptimized exit-predicated execution with static

upper bounds
» simple yet optimized code generation template for tiling, strip mining,

skewing, interchange.
» the template does not apply to fusion and reversal.
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Code generation

@ About the general applicability of affine transformations
» by default, resort to unoptimized exit-predicated execution with static

upper bounds
» simple yet optimized code generation template for tiling, strip mining,

skewing, interchange.
» the template does not apply to fusion and reversal.

o Code generation
domain
conte;(t: [u]
{5007, $1,)}
[S0(7-) = (3 :(0-) = () Sli) > 03 5(0-) = 0)]

mark: " dynamic_counted_loop([j],j < u)”

|
sequence
~ ~N

So(i,J) S1(i,4)

Code generation January 23, 2017
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Code generation

The code generation template

for (i=0; i<N; i++)
for (j=0; j<ul; j++) {
for (k=0; k<u2; k++) {

for (...) {
SO: m = f£(i);
S1: n = g(i);
Sn: if (j<m&&k<n&&...)
S(i, j, k, ...);
}
if (k>=n)
break;
}
if (j>=m)
break;

Code generation
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Code generation

The code generation template

for (i=0; i<N; i++)
for (j=0; j<ul; j++) {
for (k=0; k<u2; k++) {

for (...) {
SO : m = f(i);
S1: n = g(i);
Sn: if (j<m&&k<n&&...)

S(i, j, k, ...);

}
if (k>=n)
break;
}
if (j>=m)
break;
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Code generation

SpMV CSR code

for (i=0; i<N; i++)
for (j=0; j<u; j++) {
SO0: m = idx[i+1] - idx[i];
S1: if (j<m)
y[il += A[jl*x[col[jI11;
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Code generation

SpMV CSR code for (i=0; i<N; i++)
for (j=0; j<u; j++) {

for (i=0; i<N; i++) SO0: m = idx[i+1] - idx[il;

for (j=0; j<u; j++) { S1: if (j<m)
SO: m = idx[i+1] - idx[i]; y[i] += A[jl*x[coll[jl];
S1: if (j<m) if (j>=m)

y[il += A[jl*x[coll[jl]; break;
} }
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Code generation

SpMV CSR code

for (i=0; i<N; i++)

for (j=0; j<u; j++) {
SO0: m = idx[i+1] - idx[i];

S1: if (j<m)

y[il += A[jl*x[coll[jll;

for (ii=32*b0; ii<N;

for (jj=32*bl; jj<u;

for (i=t0; i<=min(31,N-ii);
for(j=tl; i<=min(31,u-jj);

SO: m = idx[ii+i+1]

S1: if (jj+j<m)

for (i=0;

i<N; i++)

for (j=0; j<u; j++) {

SO0: m =

idx[i+1] - idx[i];

S1: if (j<m)

y[il += A[jl*x[col[jl];

if (j>=m)
break;

ii+=8192)
jj+=8192) {

i+=32)
i+=32) {
idx[ii+i];

y[ii+i] += A[jj+jl*x[coll[jj+jll;

if (jj+j>=m)
break;
}
if (jj>=m)
break;

Polyhedral compilation of dynamic counted loops
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HOG descriptor

Performance of the HOG descriptor including data transfer time!
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'Running on NVIDIA Quadro K4000 GPU with Intel Xeon E5-2630-CPU
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HOG descriptor

Performance of the HOG descriptor including data transfer time!

I PPCG mm Our work ‘ 21.92 22.86
19.64
20
x
a 11.57
3
3 10 |
o
n 4.62
1,57
0.9153 0.2 o.l 0.3 0.2
XTI ST Y
16 32 64 128 256 1024
BLOCK_SIZE

Our work enables the effective parallelization and optimization of HOG on
the target platform, outperforming sequential execution and PPCG’s inner
parallelism version (total execution time including data transfers)

'Running on NVIDIA Quadro K4000 GPU with Intel Xeon E5-2630-CPU
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HOG descriptor

Performance of the HOG descriptor without data transfer time?

I PPCG I Our work ‘ 23.28 .02 23.23
20 .
16.8
x
o
3
k) 10 9.11 .
o
[92]
4.41 4.65
0.3I 0.3I 0.3 0.3 0.2 0.2 0.2
0 | - - - - - - - |
16 32 64 128 256 510 1024
BLOCK_SIZE

2The performance is the speedup w.r.t. the sequential execution time
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SpMV computations

CUDA vs. sequential execution time of CSR SpMV3
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®Based on the University of Florida sparse matrix collection [DH11]
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SpMV computations

CUDA vs. sequential execution time of DIA SpMV
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SpMV computations

CUDA vs. sequential execution time of ELL SpMV
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Inspector-executor codes

An inspector-executor implementation of CSR SpMV

for (i=0; i<M; i++) {
for (k=0; k<N; k++) {
marked = false;
for (j=idx[il]; j<idx[i+1]; j++)
if (k == coll[jl)
if (!marked) {
marked = true;
exp_idx [count] = k;
count++;
}
}
f_idx[i+1] = count;
} .
Inspector

for (i=0; i<N; i++) {
m = f_idx[i+1] - f_idx[i];
for (j=0; j<m; j++)
if (j<m)
y[i]l += val[j+f_idx[i]] * x[exp_idx[j+£f_idx[i]1]1];

executor

Experimental results Inspector-executor codes January 23, 2017 21/ 26



CUDA vs. sequential execution time of the CSR SpMV executor
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CUDA vs. sequential execution time of the ELL SpMV executor

Execution time/ms
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Conclusion

@ Our work

» models control dependences on data-dependent predicates by revisiting
the work of Benabderrahmane et al. [BPCB10].

» does not resort to more expressive first-order logic with non-interpreted
functions/predicates, like [SCF03, SLC*16].

» provides code generation templates for multiple scenarios, including the
inspector-executor scheme [VHS15].

@ Future work
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Conclusion

@ Our work
» models control dependences on data-dependent predicates by revisiting
the work of Benabderrahmane et al. [BPCB10].
» does not resort to more expressive first-order logic with non-interpreted
functions/predicates, like [SCF03, SLC*16].
» provides code generation templates for multiple scenarios, including the
inspector-executor scheme [VHS15].
o Future work
» fully automate and implement the framework in PPCG [VCJC'13].
» conduct further experiments on CPU and GPU platforms, comparing
the performance with the CUSP library.
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