-

— —\VESTFALISCHE
WILHELMS-UNIVERSITAT
MUNSTER

WC' V: Improving the Vectorization of
IF-statements with Warp-Coherent onditions

Huihui Sun, Florian Fey, Jie Zhao, and Sergei Gorlatch

University of Miinster, Germany
State key Lab of Mathematical Engineering & Advanced Computing, China

Vectorization with SIMD Extensions

Parallelize operations using Single-Instruction-Multiple-Data (SIMD)

- [20 [y T []
[Bo] s , -
LN [Bo [b; [z [3]
+

Sequential Vectorization on SIMD

Modern architectures provide extensive hardware support for SIMD.
Less transistors for more flops (energy efficient).
— Great future impact on next generation supercomputers expected!

Current Vectorization Approaches for SIMD Extensions

e Intrinsics: target-specific interface
e SLP or loop vectorization: conservative analysis often fails

e SPMD-on-SIMD: explicit data parallelism via data-parallel
language

Idea: Single-Program-Multiple-Data parallelized with SIMD

e Data-parallel applications are expressed as compute kernels.
e Parallel execution of different instances (threads) of a kernel.

e Groups of threads (warps) execute in lock-step mode (cf. GPUs).

Vectorized Execution in the SPMD-on-SIMD Paradigm

& iteration range
st | |
VYV VIVVVVV VY VIV Y
s2
s3
VIV VVVVVIIW VYV VIV V

Vectorized Execution in the SPMD-on-SIMD Paradigm

Conditional statements cause control flow divergence!

iteration range

%ﬂ@@@%@ummw

Else

Ideal case: Conditions behave uniform across iteration range.

Vectorized Execution in the SPMD-on-SIMD Paradigm

Conditional statements cause control flow divergence!
Problem: Diverging control flow between threads of the same warp!

iteration range

C°“dMLﬂMLMMMM

Else

Real world: Control flow divergence occurs!

e Only very few threads take an alternative branch.

Control flow divergence occurs

IF Conversion (Linearization) [Allen et al., 1983]

iteration range

~JLLLLLLLLLILLLLL

ST

Else

All threads have to execute all branches
— inactive threads are disabled by masking instructions.

+ Widely used in modern compilers like LLVM and GCC.
- Introduces redundant computations.
- Masking instructions and registers are inefficient (4x slower).

A Toy Example for Control Flow Divergence

Consider a map operation on a large array of elements of type X or O:

void compute_element ()
{
int tid = get_global_id();
if (elements[tid] == ’X’) // conditional statement
{ /* common case */ }
else
{ /* rare special case */ }
}

Different types of elements require different processing.
Challenge: Branching introduced by conditional statements!

[
(]
=
=]
]
(]
g
o
=
(]
>
(]
-~
(]
Qo
2]
=
2
=
=
o
(5]
(=)
©
2
o
I
=
2
=]
(]
>
|
(]
12}
o]
o
-
=]
o

for each warp:
does it contain| 0 ?

X X X XX X X XX X X XIX X X X[OX X XIX XXX XXXXXXXX|XO0XX|XXX X
XX X XX X X X XXX XX XXX XXXXXXXX|XXO0X|XXXX/XXXX/XXXX
XX X X X XX XX X X XXX XXX XXXXXXXXXXXXXXXXXXXXXXX
XX X XIX XX XIX XX XIXXXXIXXXXXXXXXXXXXXXXXXXXXXXX
XX X XX XX XXX XX XX XX XXXXX XXX XXXXXXXX/XXXXXXX X

XXX XIX XX XXX XXX XXX XXXXXXXXIXXXXXXXXXXXX

XX X X X X X X XX XX XXX XXXXXXXXXXXXXXXXXXXXXXXXX
X X X XX X X XX X X X X XXX XX XX

X X X X X X/ X XX X X X XXXX

We find that for many applications, conditions

e are divergent across the iteration range;

e but still uniform across almost all warps.

We call such conditions warp-coherent conditions.

Warp-Coherent Conditions in Real-World Applications

void Gauss(float *m, float *a, int Size, int t) {
int tid = cfg.get_global(0);
if (tid < Size-1-t) {
m[tid + t + 1] = a[Size * (tid + t + 1) + t] / al[Size * t + t];
¥
}

X X/ X X|X X X X[X/ X .. X|X X X X|X XO0|0

Boolean-step conditions:

e Partial Differential Equations solvers with boundary check conditions

e Search algorithms that evaluate a condition until the first match

~
N
w

Warp-Coherent Conditions in Real-World Applications

void compute_flux(int* elements) {
int tid = get_global_id(0);
nb = elements[tid];
if (nb >= 0) { /* C1 */
Branch 1(B1);

} else if (nb == -1) { /* C2 */
Branch 2 (B2);
} else if (nb == -2) { /* C3 */

Branch 3 (B3);
¥

r

X X X X|X X0 XX X .. |X X X X[X X X X

High-probability conditions:

e Computational Fluid Dynamics processing aggregate-typed elements
e Raytracing with adjacent shading points and coherent ray directions

[e9]
N
w

Warp-Coherent Conditions in Real-World Applications

;' boolean-step condition

. high-probability condition
warp-coherent condition

varying condition

Many real-world applications comprise warp-coherent conditions.
Many warp-coherent conditions are easy to detect.
Our focus: Boolean-step conditions and high-probability conditions

23

Boolean-Step Conditions: Affine Analysis

We detect boolean-step conditions based on static affine analysis
An expression E(i) of the variable i € Z is affine iff it can be expressed

in the form E(i) = ai + b with coefficients a, b € R.

We extend the traditional affine analysis for memory access patterns:
coefficients and offsets are allowed to be real numbers.

In the previous example: tid and Size-1-t are affine, thus tid < Size-1-t is
a boolean-step condition.

High-Probability Conditions: Static Branch Estimation

void compute_flux(int* elements)
{
int tid = get_global_id(0);
nb = elements[tid];
if (nb >= 0) { /* C1 */
Branch 1(B1);
} else if (nb == -1) { /* C2 %/
Branch 2 (B2);
} else if (nb == -2) { /* C3 */
Branch 3 (B3);
}

Figures gained by instrumented counters

e Branch B1 was triggered with the highest probability of 97.9%
e Branch B2 with 2% probability
e Branch B3 with the probability of only 0.1%

Branch probability leverages the existing LLVM branch probability pass.
Branch cost accumulates weighted cost of instructions.

A Real-World Example: compute_flux

void compute_flux(int* elements)

‘ ©
int tid = get_global_id(0); T F

nb = elements[tid];

if (nb >= 0) /* C1 */ B1 e
{ T F

Branch 1(B1);
} else if (nb == -1) /* C2 */ B2 @
{ T
F
Branch 2 (B2);
} else if (nb == -2) /* C3 */ B3
{

Branch 3 (B3);

compute_flux: BOSCC - What previous approaches do

original: linearization: partial linearization:

Partial linearization [Moll et al., 2018]

- Assumption: Linearization often not required.

- Only linearizes when control flow actually diverges.

> Dynamically checks (any) if branches can be skipped.

- Skips the least likely branch not executed by any thread!

compute_flux: WCCV - What our approach does

Original CFG: CFG after WCCV:

Our contribution: WCCV (Warp-Coherent Condition Vectorization)

- Inserts an all branch and a code variant without masking.
- Skips linearization entirely for coherent warps.

> Works complementary to previous approaches.

Advantage: Skip more and eliminate masking.

compute_flux: Partial Linearization after WCCV

original WCCV: after partial linearization:

+ In the average case, linearization is entirely skipped.
+ Most warps take the optimized non-masked branch.

+ We observe a speedup of 4.6X over the scalar version!

Transformation - How WCCYV is performed

Implemented in the LLVM IR level.

A

(br cond,B,C)

SN

B C

o

Transformation - How WCCYV is performed

Implemented in the LLVM IR level.

1. Clone the targeted branch A

(br cond,B,C)

W

Bvar B C

o

Transformation - How WCCYV is performed

Implemented in the LLVM IR level.

all(cond)
1. Clone the targeted branch
2. Generate the runtime all check w,wﬁm,
SN
Bvar B C
D

Transformation - How WCCYV is performed

Implemented in the LLVM IR level.

1. Clone the targeted branch
2. Generate the runtime all check
3. Insert the new blocks

all(cond)

br cond,B,C

Operating Principle - How WCCV works during execution

We perform a dynamic check once per warp:

e Is the condition’s corresponding mask all-true for all threads?

e Yes: Call the optimized code variant without masking.
e No: Call the existing linearized code variant with masking.

+ Avoids redundant computations
+ Reduces the amount of masking

- Only suited for structured control flow without goto labels

Experimental Evaluation

We implemented WCCV on top of Region Vectorizer (RV)

Our benchmarks:

e Sandy Bridge(AVX 256-bits) and Skylake(AVX512 512-bits)
e Rodinia Benchmark suite and AOBench (Raytracing)

Source code available: https://github.com/HuihuiSun/WCCV

Runtime Speedups on Sandy Bridge

N RV I WCCV

Speedup
N

xe¢ «o®
WO e
« 0625(\ 02

'

> (X\ ’AA \\3* ’50 39 ¢
‘?7('6/30"8“ & Q SR

et Q N) \ K&
o PRGN W o« A o
Q& & e
W el
a

’A\\ho \

N
o
o @
X 5 2
CSNAN &
@

&
WO oY

> 1.17x over RV

> 1.47x over scalar code

19

N
w

Runtime Speedups on Skylake

N RV I WCCV

Speedup
O N WAG O N®

e W O PR ST S
P A A\ Qé N AN Sl
ol PR a‘\“& “sf \\e»(‘ «°
o

\\s s

«© »@Q \43,
o

9 e "

2 X S O
§o® %?5/30““‘\0 5@ x\° e “a\/
O

\‘J‘“

> 1.14x over RV

> 2.11x over scalar code

Impact of SIMD Vector Width on WCCV

e Sandy Bridge AVX 256-bits
e Skylake AVX512 512-bits

Kernel vs. RV vs. Scalar masked RV Masked WCCV
nn 1.19/1.22 1.03/1.42 42,764 4/12
kmeans_swap 1.22/1.08 1.00/1.11 494,020 4/4
particlefilter 1.29/1.70 0.85/2.09 40,000 0/0
srad 1.31/1.02 2.29/2.82 229,916 0/0
kmeans_kernel_c 1.28/1.07 3.28/7.02 494,020 4/4
aobench 1.36/1.74 2.20/4.03 4,179,522 10,342/23,762

compute_flux 1.36/1.23 2.40/4.62 2,147,483,600 117,767,998/176,711,998

e Skylake has longer vector registers than Sandy Bridge:
- The runtime checks for WCCV passing less frequently.

- Less potential for improvement relative to RV.

N
[t
N
w

Comparison with OpenCL on Sandy Bridge

[N RV I WCCV [OpenCL

Speedup

St QO&O s

a® ‘,@ﬂ\\ W \!ocl’“ os& o Qs/ be“cv &
A &7 w\°"
'(,

o7

\@

e \%J
éé‘“ x“e 'éQ \\.3“\ \\\\VA
A ? o
«

We outperform Intel OpenCL on half of the benchmarks!

22/23

WCCV (Warp-Coherent Condition Vectorization)

e detects and exploits WCC to improve vectorization;
e avoids redundant computations;

e reduces execution rate of masked instructions;

e is implemented entirely in LLVM-IR level,

e significantly improves performance for many applications.

Backup Slides

A comparison between Sandy Bridge and Skylake

Platform SIMD extension SIMD Width Register number

Sandy Bridge AVX 256-bit 16
Skylake AVX512 512-bit 32

e Double the SIMD width and also double the register number
New in AVX512

e 8 new opmask registers for masking most AVX-512 instructions
used to control which values are written to the destinations

e New mini instruction extension operating on the opmask registers
like KAND, which bitwise logical AND masks

compute_flux: BOSCC

Original CFG: CFG after BOSCC:

BOSCC(Bypass-On-Superword-Condition-Code) [Shin et al., 2005]

- inserts an any branch to skip the execution of a masked branch if its
mask is all-false

compute_ flux: Partial linearization after BOSCC

original: linearization: partial linearization:

Partial linearization[Moll et al., 2018]

> only linearizes varying branches (different values for different
threads) while preserving uniform branches (same value for different
threads)

	Appendix

