
WCCV: Improving the Vectorization of
IF-statements with Warp-Coherent Conditions

Huihui Sun, Florian Fey, Jie Zhao, and Sergei Gorlatch

University of Münster, Germany
State key Lab of Mathematical Engineering & Advanced Computing, China



Vectorization with SIMD Extensions

Parallelize operations using Single-Instruction-Multiple-Data (SIMD)

Modern architectures provide extensive hardware support for SIMD.
Less transistors for more flops (energy efficient).
→ Great future impact on next generation supercomputers expected!

1 / 23



Current Vectorization Approaches for SIMD Extensions

• Intrinsics: target-specific interface
• SLP or loop vectorization: conservative analysis often fails
• SPMD-on-SIMD: explicit data parallelism via data-parallel

language

Idea: Single-Program-Multiple-Data parallelized with SIMD

• Data-parallel applications are expressed as compute kernels.
• Parallel execution of different instances (threads) of a kernel.
• Groups of threads (warps) execute in lock-step mode (cf. GPUs).

2 / 23



Vectorized Execution in the SPMD-on-SIMD Paradigm

iteration range

S1

S2

S3

warp

3 / 23



Vectorized Execution in the SPMD-on-SIMD Paradigm

Conditional statements cause control flow divergence!

iteration range

Cond

Then

Else

Ideal case: Conditions behave uniform across iteration range.

3 / 23



Vectorized Execution in the SPMD-on-SIMD Paradigm

Conditional statements cause control flow divergence!
Problem: Diverging control flow between threads of the same warp!

iteration range

Cond

Then

Else

Real world: Control flow divergence occurs!
• Only very few threads take an alternative branch.

3 / 23



Control flow divergence occurs

IF Conversion (Linearization) [Allen et al., 1983]

iteration range

Cond

Then

Else

All threads have to execute all branches
→ inactive threads are disabled by masking instructions.

+ Widely used in modern compilers like LLVM and GCC.
- Introduces redundant computations.
- Masking instructions and registers are inefficient (4x slower).

4 / 23



A Toy Example for Control Flow Divergence

Consider a map operation on a large array of elements of type X or O:

void compute_element()
{

int tid = get_global_id();
if (elements[tid] == ’X’) // conditional statement
{ /* common case */ }
else
{ /* rare special case */ }

}

Different types of elements require different processing.
Challenge: Branching introduced by conditional statements!

5 / 23



Our Observation: How do conditions behave in practice?

We find that for many applications, conditions

• are divergent across the iteration range;
• but still uniform across almost all warps.

We call such conditions warp-coherent conditions.

6 / 23



Warp-Coherent Conditions in Real-World Applications

void Gauss(float *m, float *a, int Size, int t) {
int tid = cfg.get_global(0);
if (tid < Size-1-t) {

m[tid + t + 1] = a[Size * (tid + t + 1) + t] / a[Size * t + t];
}

}

Boolean-step conditions:

• Partial Differential Equations solvers with boundary check conditions
• Search algorithms that evaluate a condition until the first match

7 / 23



Warp-Coherent Conditions in Real-World Applications

void compute_flux(int* elements) {
int tid = get_global_id(0);
nb = elements[tid];
if (nb >= 0) { /* C1 */

Branch 1(B1);
} else if (nb == -1) { /* C2 */

Branch 2 (B2);
} else if (nb == -2) { /* C3 */

Branch 3 (B3);
}

}

High-probability conditions:

• Computational Fluid Dynamics processing aggregate-typed elements
• Raytracing with adjacent shading points and coherent ray directions

8 / 23



Warp-Coherent Conditions in Real-World Applications

boolean-step condition

high-probability condition

warp-coherent condition

varying condition

Many real-world applications comprise warp-coherent conditions.
Many warp-coherent conditions are easy to detect.
Our focus: Boolean-step conditions and high-probability conditions

9 / 23



Boolean-Step Conditions: Affine Analysis

We detect boolean-step conditions based on static affine analysis

An expression E (i) of the variable i ∈ Z is affine iff it can be expressed
in the form E (i) = ai + b with coefficients a, b ∈ R.

We extend the traditional affine analysis for memory access patterns:
coefficients and offsets are allowed to be real numbers.

In the previous example: tid and Size-1-t are affine, thus tid < Size-1-t is
a boolean-step condition.

10 / 23



High-Probability Conditions: Static Branch Estimation

void compute_flux(int* elements)
{

int tid = get_global_id(0);
nb = elements[tid];
if (nb >= 0) { /* C1 */

Branch 1(B1);
} else if (nb == -1) { /* C2 */

Branch 2 (B2);
} else if (nb == -2) { /* C3 */

Branch 3 (B3);
}

}

Figures gained by instrumented counters

• Branch B1 was triggered with the highest probability of 97.9%
• Branch B2 with 2% probability
• Branch B3 with the probability of only 0.1%

Branch probability leverages the existing LLVM branch probability pass.
Branch cost accumulates weighted cost of instructions.

11 / 23



A Real-World Example: compute_flux

void compute_flux(int* elements)
{

int tid = get_global_id(0);
nb = elements[tid];
if (nb >= 0) /* C1 */
{

Branch 1(B1);
} else if (nb == -1) /* C2 */
{

Branch 2 (B2);
} else if (nb == -2) /* C3 */
{

Branch 3 (B3);
}

}

12 / 23



compute_flux: BOSCC - What previous approaches do
original: linearization: partial linearization:

Partial linearization [Moll et al., 2018]

: Assumption: Linearization often not required.
: Only linearizes when control flow actually diverges.
: Dynamically checks (any) if branches can be skipped.
: Skips the least likely branch not executed by any thread!

13 / 23



compute_flux: WCCV - What our approach does
Original CFG: CFG after WCCV:

Our contribution: WCCV (Warp-Coherent Condition Vectorization)

: Inserts an all branch and a code variant without masking.
: Skips linearization entirely for coherent warps.
: Works complementary to previous approaches.

Advantage: Skip more and eliminate masking.
14 / 23



compute_flux: Partial Linearization after WCCV

original WCCV: after partial linearization:

+ In the average case, linearization is entirely skipped.
+ Most warps take the optimized non-masked branch.
+ We observe a speedup of 4.6X over the scalar version!

15 / 23



Transformation - How WCCV is performed

Implemented in the LLVM IR level.

B C

D

T F

A
(br cond,B,C)

16 / 23



Transformation - How WCCV is performed

Implemented in the LLVM IR level.

1. Clone the targeted branch

B C

D

T F

Bvar

A
(br cond,B,C)

16 / 23



Transformation - How WCCV is performed

Implemented in the LLVM IR level.

1. Clone the targeted branch
2. Generate the runtime all check

B C

D

T F

Bvar

all(cond)

A
(br cond,B,C)

16 / 23



Transformation - How WCCV is performed

Implemented in the LLVM IR level.

1. Clone the targeted branch
2. Generate the runtime all check
3. Insert the new blocks

br cond,B,C

B C

D

T F

Bvar

all(cond)

A

T F

16 / 23



Operating Principle - How WCCV works during execution

We perform a dynamic check once per warp:

• Is the condition’s corresponding mask all-true for all threads?
• Yes: Call the optimized code variant without masking.
• No: Call the existing linearized code variant with masking.

+ Avoids redundant computations
+ Reduces the amount of masking
- Only suited for structured control flow without goto labels

17 / 23



Experimental Evaluation

We implemented WCCV on top of Region Vectorizer (RV)

Our benchmarks:

• Sandy Bridge(AVX 256-bits) and Skylake(AVX512 512-bits)
• Rodinia Benchmark suite and AOBench (Raytracing)

Source code available: https://github.com/HuihuiSun/WCCV

18 / 23



Runtime Speedups on Sandy Bridge

aob
enc

h
BFS

_2

kme
ans

_sw
ap

kme
ans

_ke
rnel

_c

com
put

e_fl
ux

hot
spo

t
lava

MD nn srad

hot
spo

t3D
bac

kpr
opnw

par
ticle

filte
r lud

pat
hfin

der
b+t

ree

stre
amc

lust
er

myo
cyte

hea
rtw

all
0

0.5
1

1.5
2

2.5
3

3.5
4

Sp
ee
du

p

RV WCCV

: 1.17× over RV
: 1.47× over scalar code

19 / 23



Runtime Speedups on Skylake

aob
enc

h
BFS

_2

kme
ans

_sw
ap

kme
ans

_ke
rnel

_c

com
put

e_fl
ux

hot
spo

t
lava

MD nn srad

hot
spo

t3D
bac

kpr
opnw

par
ticle

filte
r lud

pat
hfin

der
b+t

ree

stre
amc

lust
er

myo
cyte

hea
rtw

all
0
1
2
3
4
5
6
7
8

Sp
ee
du

p

RV WCCV

: 1.14× over RV
: 2.11× over scalar code

20 / 23



Impact of SIMD Vector Width on WCCV

• Sandy Bridge AVX 256-bits
• Skylake AVX512 512-bits

Kernel vs. RV vs. Scalar masked RV Masked WCCV

nn 1.19/1.22 1.03/1.42 42,764 4/12
kmeans_swap 1.22/1.08 1.00/1.11 494,020 4/4
particlefilter 1.29/1.70 0.85/2.09 40,000 0/0

srad 1.31/1.02 2.29/2.82 229,916 0/0
kmeans_kernel_c 1.28/1.07 3.28/7.02 494,020 4/4

aobench 1.36/1.74 2.20/4.03 4,179,522 10,342/23,762
compute_flux 1.36/1.23 2.40/4.62 2,147,483,600 117,767,998/176,711,998

• Skylake has longer vector registers than Sandy Bridge:
: The runtime checks for WCCV passing less frequently.
: Less potential for improvement relative to RV.

21 / 23



Comparison with OpenCL on Sandy Bridge

aob
enc

h
BFS

_2

kme
ans

_sw
ap

kme
ans

_ke
rnel

_c

com
put

e_fl
ux

hot
spo

t
lava

MD nn srad

hot
spo

t3D
bac

kpr
opnw

par
ticle

filte
r lud

pat
hfin

der
b+t

ree

stre
amc

lust
er

myo
cyte

hea
rtw

all
0

0.25

0.5

0.75

1

Sp
ee
du

p

RV WCCV OpenCL

We outperform Intel OpenCL on half of the benchmarks!

22 / 23



Summary

WCCV (Warp-Coherent Condition Vectorization)

• detects and exploits WCC to improve vectorization;
• avoids redundant computations;
• reduces execution rate of masked instructions;
• is implemented entirely in LLVM-IR level;
• significantly improves performance for many applications.

23 / 23



Backup Slides



A comparison between Sandy Bridge and Skylake

Platform SIMD extension SIMD Width Register number

Sandy Bridge AVX 256-bit 16
Skylake AVX512 512-bit 32

• Double the SIMD width and also double the register number

New in AVX512

• 8 new opmask registers for masking most AVX-512 instructions
used to control which values are written to the destinations

• New mini instruction extension operating on the opmask registers
like KAND, which bitwise logical AND masks



compute_flux: BOSCC

Original CFG: CFG after BOSCC:

BOSCC(Bypass-On-Superword-Condition-Code) [Shin et al., 2005]

: inserts an any branch to skip the execution of a masked branch if its
mask is all-false



compute_flux: Partial linearization after BOSCC

original: linearization: partial linearization:

Partial linearization[Moll et al., 2018]

: only linearizes varying branches (different values for different
threads) while preserving uniform branches (same value for different
threads)


	Appendix

