
Post-Link Outlining for Code Size Reduction

Shaobai Yuan, Jihong He, Yihui Xie, Feng Wang, Jie Zhao

Hunan University, Changsha, China

CC 2025

Yuanshaobai et al. (Hunan University) Post-Link Outlining 1 / 15



Outline

1 Motivation

2 Approach

3 Experimental Results

4 Future Work

Yuanshaobai et al. (Hunan University) Post-Link Outlining 2 / 15



Motivation
Code size reduction is critical for resource-constrained environments
Traditional compile-time optimizations focus primarily on performance
rather than code size.
Outlining is a transformation that extracts repeated instruction
sequences into separate functions, trading performance for code size
reduction.

Figure: outlining

Yuanshaobai et al. (Hunan University) Post-Link Outlining 3 / 15



Motivation

Compile-time Outlining:
LLVM’s -moutline, -Oz enable aggressive outlining.
But limited by local scope.

LTO or Linker Outlining:
Integrates global knowledge at link time.
May not consider dynamic information.
Some approaches require changing the build pipeline significantly.
Rely on LLVM

BOLT (Binary Optimization and Layout Tool):
A post-link optimizer that can reorder code, integrate PGO, etc.
Opportunity: No deep changes to compilation flow.

Goal: Develop a post-link outlining(PLOS) approach to achieve
further code size reduction by leveraging a whole-program perspective
without altering the standard LLVM/GCC build flow.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 4 / 15



Contribution

Contribution: Our PLOS approach extends BOLT to add a post-link
outlining, enabling:

Fine-grained repeated sequence detection.
Careful stack frame management.
Nested outlining (supporting multiple layers).
Integration with Profile-Guided Optimization (PGO).

Yuanshaobai et al. (Hunan University) Post-Link Outlining 5 / 15



Overall Flow of PLOS

Figure: *

PLOS Flow: Disassemble → Identify repeated sequences → Outline →
Relink

Yuanshaobai et al. (Hunan University) Post-Link Outlining 6 / 15



Key Techniques

(1) Stack Frame Management
Generate minimal prologue/epilogue in the outlined function.
Properly adjust stack pointer alignment (e.g., 16-byte for AArch64).
Offset stack accesses when needed, enabling bigger extraction scopes.
Tail call optimization: converting bl to b if call is last in the function.

(2) Nested Outlining
Further outline newly created outlined functions themselves if
repeated code persists.
Manage second-level or deeper extractions carefully (stack offsets, tail
calls again).
Post-link shrink-wrapping: remove unnecessary prologues/epilogues if
the new function flow is simple.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 7 / 15



Key Techniques

Figure: Stack Frame Management

Yuanshaobai et al. (Hunan University) Post-Link Outlining 8 / 15



Key Techniques: Nested-Outlining

Figure: Nested-Outlining
Yuanshaobai et al. (Hunan University) Post-Link Outlining 9 / 15



PGO Integration

BOLT can analyze runtime profiles under typical workloads.
PLOS outlines cold code segments more aggressively, while leaving
hot segments intact to reduce performance overhead.
Achieve a balance between code size savings and performance.
No major changes to standard compilation flow. Post-link stage is
fully decoupled from the main build pipeline.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 10 / 15



Code Size Reduction

Figure: Code size reduction for Mibench (normalized to ‘-Os’).

PLOS achieves a mean code size reduction of 10.88%, up to
43.53%. (compare to -Os)
PLOS achieves a mean code size reduction of 1.76%, up to
4.75%. (compare to -Oz) (Outlining is applied at compile
time.)

Yuanshaobai et al. (Hunan University) Post-Link Outlining 11 / 15



Performance Trade-off

Figure: Performance trade-off for Mibench (normalized to ‘-Os’).

With PGO, performance degradation remains below 3% while
preserving code size benefits.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 12 / 15



Experimental Comparison: PLOS vs. SOTA

Figure: Comparison of Code Size Reduction: LTO vs. SOTA

PLOS achieves a mean code size reduction of 2.88% and up to
8.56%.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 13 / 15



Future Work

Enhanced Cost Model we aim to explore more sophisticated or
machine-learning-based models to better balance code size reduction
and performance under various scenarios.
Finer-Grained Profile-Guided Optimization By using Finer-Grained
profiling (e.g., at the basic-block or instruction level), we could
preserve performance for hot paths more accurately, while aggressively
outlining cold paths to further shrink code size.
Support for Additional Architectures In the future, we plan to
extend the stack-frame management and offsetting logic to platforms
like x86 and RISC-V, verifying the method’s versatility and scalability
Combining with Other Post-Link Techniques We intend to
explore integrating PLOS with these existing optimizations to further
enhance both code size reduction and performance.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 14 / 15



Thank you!
Q & A

Yuanshaobai et al. (Hunan University) Post-Link Outlining 15 / 15


	Motivation
	Approach
	Experimental Results
	Future Work

