Post-Link Outlining for Code Size Reduction

Shaobai Yuan, Jihong He, Yihui Xie, Feng Wang, Jie Zhao

Hunan University, Changsha, China

Yuanshaobai et al. (Hunan University) Post-Link Outlining 1/15

© Motivation

9 Approach

© Experimental Results

@ Future Work

Yuanshaobai et al. (Hunan University) Post-Link Outlining 2/15

Motivation

@ Code size reduction is critical for resource-constrained environments

@ Traditional compile-time optimizations focus primarily on performance
rather than code size.

@ Outlining is a transformation that extracts repeated instruction
sequences into separate functions, trading performance for code size

reduction.

foo()

adds ro, #51

muls re, ro, ro foo()

adds ro, #1 adds ro, #51

muls re, ro, ro b OUTLINED_FUNCTION_O

adds re, #2 OUTLINED_FUNCTION_O()

bx 1r muls re, re, ro
adds re, #1
muls re, re, ro
adds re, #2

bar() X

muls re, roe, ro

adds ro, #1 bar ()

muls RO, r0,8n0 b OUTLINED_FUNCTION_O

adds ro, #2

bx 1r

Figure: outlining

Yuanshaobai et al. (Hunan University) Post-Link Outlining

o Compile-time Outlining;:
o LLVM'’s -moutline, -0z enable aggressive outlining.
e But limited by local scope.
@ LTO or Linker Outlining:
o Integrates global knowledge at link time.
e May not consider dynamic information.
e Some approaches require changing the build pipeline significantly.
e Rely on LLVM
e BOLT (Binary Optimization and Layout Tool):
e A post-link optimizer that can reorder code, integrate PGO, etc.
o Opportunity: No deep changes to compilation flow.
@ Goal: Develop a post-link outlining(PLOS) approach to achieve
further code size reduction by leveraging a whole-program perspective
without altering the standard LLVM/GCC build flow.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 4/15

Contribution

@ Contribution: Our PLOS approach extends BOLT to add a post-link
outlining, enabling:
e Fine-grained repeated sequence detection.
o Careful stack frame management.
o Nested outlining (supporting multiple layers).
o Integration with Profile-Guided Optimization (PGO).

Yuanshaobai et al. (Hunan University) Post-Link Outlining 5/15

Overall Flow of PLOS

original binary eligible code MClInst
begin ————5 identification -----=-=--- >
§3

¥ MClInst segments

stack frame S
profile info
management Me----m=m=m====
§41

MClInst segments

Note: MCInst represents
low-level machine code.

outlining | outlined MCInst
§4.2

+ L

optimized binary

end relinker

Figure: *

PLOS Flow: Disassemble — Identify repeated sequences — Outline —
Relink

Yuanshaobai et al. (Hunan University) Post-Link Outlining 6 /15

Key Techniques

(1) Stack Frame Management

@ Generate minimal prologue/epilogue in the outlined function.

@ Properly adjust stack pointer alignment (e.g., 16-byte for AArch64).
o Offset stack accesses when needed, enabling bigger extraction scopes.
@ Tail call optimization: converting bl to b if call is last in the function.)

(2) Nested Outlining
@ Further outline newly created outlined functions themselves if
repeated code persists.
@ Manage second-level or deeper extractions carefully (stack offsets, tail
calls again).
@ Post-link shrink-wrapping: remove unnecessary prologues/epilogues if
the new function flow is simple.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 7/15

Key Techniques

— bl
str
str
bl
str
bl

outline1:

outline2:

stp

bl

Idrsw
> strb

Idrb

Idp

b

Yuanshaobai et al. (Hunan University)

outline1

X8, [sp, #8]

X9, [sp]

52094 <FuncNb>
wazr, [sp]
outline2

w7, wzr
X0, x22
X2, x24
52f00 <FuncNa>

x29, x30, [sp, #-16]!~~

52114 <FuncNc>
x10, [, #444]
w8, [x20, #32]
w8, [x23]

x29, x30, [sp], #16"

520ff0<FuncNd>

Figure: Stack Frame Management

We adjust the offset as we
follow the changes in the stack
pointer.

Post-Link Outlining

outline1

x29, x30, [sp, #-16]!

w7, wzr

X0, x22

x2, x24

52f00 <FuncNa>

X8, [sp, #24]

x9, [sp, #16]

52094 <FuncNb>

wzr, [sp, #16]

52114 <FuncNc>

x10, [x9, #444]

w8, [x20, #32]

w8, [x23]

x29, x30, [sp], #16
, 520ff0<FuncNd>

w7, wzr bl
mov X0, x22
mov X2, x24 .
bl 52f00 <FuncNa> outinel”
str X8, [sp, #8] stp
str x9, [sp] oY
bl 52094 <FuncNb> oy,
str wzr, [sp] moy;
bl 52114 <FuncNc> bl
Idrsw x10, [x9, #444] str
strb w8, [x20, #32] i
|drb w8, [x23] /ol
bl 520ff0<FuncNd> e
/ Idrsw
Callee save and restore, it strb
* changes the stack pointer Idrb
Idp
Accessing data on the stack, o b

Tail call, a return instruction
was eliminated.

Key Techniques: Nested-Outlining

<outline11267>:

cbz X8, 105b4 Idr X9, [x8]
Idr X9, [x8] str X9, [x24]
str X9, [x24] Idr X9, [x0]
dr X9, [x0] str X9, [x8]
str X9, [x8] ret
3
B
El
<outline10168>:
stp 29, X30, [sp, #-16]! <outline10168>:
dr X9, [x8] stp X29, X30, [sp, #-16]!
str X9, [x24] bl 53808 <outline11267>
Idr X9, [x0] bl 50580 <outline10704>
str X9, [x8] dr X8, [x26]
Idr X8, [x26] Idr X0, [x12]
Idr X9, [x25] 1dp X29, X30, [sp), #16
Idr 11, [x24] ret
Idr 10, [x8]
str X9, [x10, #8]
str x11, [x8]
dr X8, [x26]
Idr x0, [x12] 3 <outline10704>:
idp %29, %30, [spl, #16 | & dr X8, [x26]
ret £ 1dr X9, [x25] <
b 54df0 <outline11533>
str X8, [x21]
Idr X8, [x26]
:g: :?'1 [’;?4] <outline11533>:
¢ Idr x11, [x24]
lag S10 b dr X10, [x8]
str x9, [x10, #8] . <
s X, b str X9, [x10, #8]
str 11, [x8]
ret
3
2 <outline10695>:
3 stp x29, x30, [sp, #-16]!
Idr X8, [x26] <outline10695>:
Idr X9, [x27] dr X8, [x26]
Idr x11, [x24] Idr X9, [x27]
Idr x10, [x8] b . 54df0 <outiine11533>
str X9, [x10, #8] v
8 XUl Tail call, a retum instruction and callee
ldp x29, x30, [sp], #16 save and restore was eliminated.

Yuanshaobai et al. (Hunan University) Post-Link Outlining

PGO Integration

BOLT can analyze runtime profiles under typical workloads.

PLOS outlines cold code segments more aggressively, while leaving
hot segments intact to reduce performance overhead.

Achieve a balance between code size savings and performance.

No major changes to standard compilation flow. Post-link stage is
fully decoupled from the main build pipeline.

Yuanshaobai et al. (Hunan University) Post-Link Outlining

Code Size Reduction

1.0
8
® 09
3
S 08 & Os
T [Os+moutline
N7
< [Os+PLOS
£
'g 0.6 [Oz
[] Bl Oz+PLOS
0.5 1 T 1 1 I 1

]

R IO Y A\9° WS %\ 50

PR 9\0 oD g R P %q;a
© & & 3 \» e

Figure: Code size reduction for Mibench (normalized to *-Os').

@ PLOS achieves a mean code size reduction of 10.88%, up to
43.53%. (compare to -Os)

e PLOS achieves a mean code size reduction of 1.76%, up to
4.75%. (compare to -Oz) (Outlining is applied at compile
time.)

Yuanshaobai et al. (Hunan University) Post-Link Outlining 11 /15

Performance Trade-off

ghostscript
lout~ Os baseline
lame = code size(Os+moutline)
djpeg = execution time(Os+moutline)
cipeg- =3 code size(Os+PLOS w/o PGO)

k 3 execution time(Os+PLOS w/o PGO)
susan - | B code size(Os+PLOS w/ PGO)
basicmath — Em execution time(Os+PLOS w/ PGO)

blowfish -
1.5 1 0.5 1

normalized execution time and codesize
Figure: Performance trade-off for Mibench (normalized to -Os’).

With PGO, performance degradation remains below 3% while
preserving code size benefits.

Yuanshaobai et al. (Hunan University) Post-Link Outlining

Experimental Comparison: PLOS vs. SO

=

g 1.0 Os baseline
(]
g0 B Os+Chabbi's
g o8 [Os+Chabbi's+PLOS
3 07 =1 Os+Chabbi's(x5)
E 0.6 [Os+Chabbi's(x5)+PLOS

o5 Bl Os+PLOS

X 2\ A\ e " s
“\od“% G & & (o
O

s o

Figure: Comparison of Code Size Reduction: LTO vs. SOTA

@ PLOS achieves a mean code size reduction of 2.88% and up to
8.56%.

Yuanshaobai et al. (Hunan University) Post-Link Outlining 13 /15

@ Enhanced Cost Model we aim to explore more sophisticated or
machine-learning-based models to better balance code size reduction
and performance under various scenarios.

o Finer-Grained Profile-Guided Optimization By using Finer-Grained
profiling (e.g., at the basic-block or instruction level), we could
preserve performance for hot paths more accurately, while aggressively
outlining cold paths to further shrink code size.

@ Support for Additional Architectures In the future, we plan to
extend the stack-frame management and offsetting logic to platforms
like x86 and RISC-V, verifying the method’s versatility and scalability

o Combining with Other Post-Link Techniques We intend to
explore integrating PLOS with these existing optimizations to further
enhance both code size reduction and performance.

Yuanshaobai et al. (Hunan University) Post-Link Outlining

Thank youl!

Q&A

Yuanshaobai et al. (Hunan University) Post-Link Outlining

	Motivation
	Approach
	Experimental Results
	Future Work

