
A Polyhedral Compilation Framework for Loops with
Dynamic Data-Dependent Bounds

Jie Zhao, Michael Kruse and Albert Cohen

INRIA & École Normale Supérieure
45 rue d’Ulm, 75005 Paris, France

27th International Conference on Compiler Construction (CC 2018)
Vienna, Austria

January 24, 2018

January 24, 2018 1 / 21



Outline

1 Introduction
Dynamic counted loops
Examples
The polyhedral model

2 Polyhedral compilation of dynamic counted loops
Program analysis
Schedule tree
Schedule transformation
Code generation
General applicability

3 Experimental results
Setup and methodology
Evaluation on GPUs
Evaluation on CPUs

4 Conclusion

January 24, 2018 2 / 21



Dynamic counted loops

What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are counted loops
(a.k.a. do loops in Fortran) with numerical constant strides, whose lower
and/or upper bound may not be an affine function of enclosing loop
counters and loop-invariant parameters

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++) // dynamically computed bounds

S2: S(i, j);

}

Introduction Dynamic counted loops January 24, 2018 3 / 21



Dynamic counted loops

What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are counted loops
(a.k.a. do loops in Fortran) with numerical constant strides, whose lower
and/or upper bound may not be an affine function of enclosing loop
counters and loop-invariant parameters

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++) // dynamically computed bounds

S2: S(i, j);

}

Introduction Dynamic counted loops January 24, 2018 3 / 21



Dynamic counted loops

What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are counted loops
(a.k.a. do loops in Fortran) with numerical constant strides, whose lower
and/or upper bound may not be an affine function of enclosing loop
counters and loop-invariant parameters

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++) // dynamically computed bounds

S2: S(i, j);

}

Introduction Dynamic counted loops January 24, 2018 3 / 21



Dynamic counted loops

Why are we interested in the class of loop nest kernels involving dynamic

counted loops?

dynamic counted loops are less expressive than general while
loops.

Less expressive/general control flow enables more aggressive
optimizations.

Building on the state of the art polyhedral optimization of while
loops by Benabderrahmane et al. [BPCB10], but the authors’ efficient
code generation algorithm is not completely described.

[BPCB10] is constrained by inductive dependences on exit conditions
which limit affine transformations and parallelization.

Introduction Dynamic counted loops January 24, 2018 4 / 21



Dynamic counted loops

Why are we interested in the class of loop nest kernels involving dynamic

counted loops?

dynamic counted loops are less expressive than general while
loops.

Less expressive/general control flow enables more aggressive
optimizations.

Building on the state of the art polyhedral optimization of while
loops by Benabderrahmane et al. [BPCB10], but the authors’ efficient
code generation algorithm is not completely described.

[BPCB10] is constrained by inductive dependences on exit conditions
which limit affine transformations and parallelization.

Introduction Dynamic counted loops January 24, 2018 4 / 21



Comparison with general while loops

for (i=0; i<N; i++) {

S0: condition = ...;

while (condition) {

S1: condition = ...;

S2: S;

}

}

A general while loop

S1

S0

S2

es1→s1

es0→s1

for (i=0; i<N; i++) {

S0: m = condition;

for (j=0; j<m; j++)

S1: S;

}

A dynamic counted loop

S1

S0

es0→s1

Introduction Dynamic counted loops January 24, 2018 5 / 21



Real-life examples of dynamic counted loops

Dynamic counted loops play an important role in numerical solvers, media
processing applications, data analytics, etc. They can be found in

Dynamic programming

Histogram of oriented gradients

Finite element method

Sparse matrix-vector/matrix-matrix multiplications

...

Introduction Examples January 24, 2018 6 / 21



The polyhedral model

The polyhedral model represents a program and its semantics using iteration
domains, access relations, dependences and schedules.

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

Iteration domain:
{S0(i) : 0 ≤ i < N; S1(i) : 0 ≤ i < N; S2(i) : 0 ≤ i < N}

Access relation:
I Write: {S0(i)→ lb : 0 ≤ i < N; S1(i)→ ub : 0 ≤ i < N}
I Read: {}

Dependence: {}a

Schedule: [S0(i)→ (i , 0);S1(i)→ (i , 1);S2(i)→ (i , 2)]

aConsider only true/flow dependences.

Introduction The polyhedral model January 24, 2018 7 / 21



The polyhedral model

The polyhedral model represents a program and its semantics using iteration
domains, access relations, dependences and schedules.

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

Iteration domain:
{S0(i) : 0 ≤ i < N; S1(i) : 0 ≤ i < N; S2(i) : 0 ≤ i < N}

Access relation:
I Write: {S0(i)→ lb : 0 ≤ i < N; S1(i)→ ub : 0 ≤ i < N}
I Read: {}

Dependence: {}a

Schedule: [S0(i)→ (i , 0);S1(i)→ (i , 1);S2(i)→ (i , 2)]

aConsider only true/flow dependences.

Introduction The polyhedral model January 24, 2018 7 / 21



The polyhedral model

The polyhedral model represents a program and its semantics using iteration
domains, access relations, dependences and schedules.

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

Iteration domain:
{S0(i) : 0 ≤ i < N; S1(i) : 0 ≤ i < N; S2(i) : 0 ≤ i < N}

Access relation:
I Write: {S0(i)→ lb : 0 ≤ i < N; S1(i)→ ub : 0 ≤ i < N}
I Read: {}

Dependence: {}a

Schedule: [S0(i)→ (i , 0);S1(i)→ (i , 1);S2(i)→ (i , 2)]

aConsider only true/flow dependences.

Introduction The polyhedral model January 24, 2018 7 / 21



The polyhedral model

The polyhedral model is not able to classify the whole loop nest as a static
control part (SCoP).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

Iteration domain:
{S0(i) : 0 ≤ i < N; S1(i) : 0 ≤ i < N; S2(i) : 0 ≤ i < N}

Access relation:
I Write: {S0(i)→ lb : 0 ≤ i < N; S1(i)→ ub : 0 ≤ i < N}
I Read: {}

Dependence: {}a

Schedule: [S0(i)→ (i , 0);S1(i)→ (i , 1);S2(i)→ (i , 2)]

aConsider only true/flow dependences.

Introduction The polyhedral model January 24, 2018 7 / 21



The polyhedral model

The polyhedral model is not able to classify the whole loop nest as a static
control part (SCoP).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

Iteration domain:
{S0(i) : 0 ≤ i < N; S1(i) : 0 ≤ i < N; S2(i , j) : 0 ≤ i < N ∧ lb ≤ j < ub}

Access relation:
I Write: {S0(i)→ lb : 0 ≤ i < N; S1(i)→ ub : 0 ≤ i < N}
I Read:
{S2(i , j)→ lb : 0 ≤ i < N ∧ lb ≤ j < ub; S2(i , j)→ ub : 0 ≤ i < N ∧ lb ≤ j < ub}

Dependence: {S0[i ]− > S2[i ′ = i , j] : 0 ≤ i < N ∧ lb ≤ j < ub;S1[i ]− > S2[i ′ = i , j] : 0 ≤
i < N ∧ lb ≤ j < ub}
Schedule: [S0(i)→ (i , 0);S1(i)→ (i , 1);S2(i , j)→ (i , j)]

Introduction The polyhedral model January 24, 2018 7 / 21



The polyhedral model

The polyhedral model is not able to classify the whole loop nest as a static
control part (SCoP).

Our purpose is to extend the polyhedral model to handle dynamic counted
loops and generate code for both general-purpose multicores and heteroge-
neous accelerators.

Introduction The polyhedral model January 24, 2018 7 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 8 / 21



Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j);S1(i , j)}

S0(i , j)→ (i);S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 9 / 21



Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j);S1(i , j)}

S0(i , j)→ (i);S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 9 / 21



Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j);S1(i , j)}

S0(i , j)→ (i);S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 9 / 21



Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 9 / 21



Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 9 / 21



Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Loop transformations like tiling would be impossible for the original code.

Polyhedral compilation of dynamic counted loops Program analysis January 24, 2018 9 / 21



Schedule tree

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Core node types
I Domain: set of statement instances to be scheduled
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence/Set: children executed in given/arbitrary order

Convenience node types
I Mark: attach additional information to subtrees
I Extension: add additional domain elements to facilitate non-polyhedral

semantics

Polyhedral compilation of dynamic counted loops Schedule tree January 24, 2018 10 / 21



Schedule tree

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Core node types
I Domain: set of statement instances to be scheduled
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence/Set: children executed in given/arbitrary order

Convenience node types
I Mark: attach additional information to subtrees
I Extension: add additional domain elements to facilitate non-polyhedral

semantics

Polyhedral compilation of dynamic counted loops Schedule tree January 24, 2018 10 / 21



Schedule tree

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Core node types
I Domain: set of statement instances to be scheduled
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence/Set: children executed in given/arbitrary order

Convenience node types
I Mark: attach additional information to subtrees
I Extension: add additional domain elements to facilitate non-polyhedral

semantics

Polyhedral compilation of dynamic counted loops Schedule tree January 24, 2018 10 / 21



Schedule transformation

Schedule generation
I Apply any affine transformation, e.g., a variant of the Pluto algorithm.
I Insert a mark node below each band node associated with a

dynamically counted loop.

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 11 / 21



Schedule transformation

Schedule generation
I Apply any affine transformation, e.g., a variant of the Pluto algorithm.
I Insert a mark node below each band node associated with a

dynamically counted loop.

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 11 / 21



Schedule transformation

Schedule generation
I Apply any affine transformation, e.g., a variant of the Pluto algorithm.
I Insert a mark node below each band node associated with a

dynamically counted loop.

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 11 / 21



Schedule transformation

Schedule generation
I Apply any affine transformation, e.g., a variant of the Pluto algorithm.
I Insert a mark node below each band node associated with a

dynamically counted loop.

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 11 / 21



Schedule transformation

Schedule generation
I Apply any affine transformation, e.g., a variant of the Pluto algorithm.
I Insert a mark node below each band node associated with a

dynamically counted loop.

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 11 / 21



Schedule transformation

Perform any loop transformations, e.g., tiling.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Schedule transformation

Perform any loop transformations, e.g., tiling.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Schedule transformation

Perform any loop transformations, e.g., tiling.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

mark: “dynamic counted loop”

S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i)

mark: “dynamic counted loop”

S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Schedule transformation

Perform any loop transformations, e.g., tiling.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

mark: “dynamic counted loop”

S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i)

mark: “dynamic counted loop”

S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Schedule transformation

Replace each occurrence of mark nodes with an extension node.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

mark: “dynamic counted loop”

S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i)

mark: “dynamic counted loop”

S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Schedule transformation

Replace each occurrence of mark nodes with an extension node.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

mark: “dynamic counted loop”

S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i)

mark: “dynamic counted loop”

S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Schedule transformation

Replace each occurrence of mark nodes with an extension node.

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4); S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

mark: “dynamic counted loop”

S0(i, j) → (j/8); S1(i, j) → (j/8)

mark: “dynamic counted loop”

S0(i, j) → (i); S1(i, j) → (i)

mark: “dynamic counted loop”

S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

Extension nodes are inserted everywhere an early exit statement may be
needed, associated with the loop depth.

Polyhedral compilation of dynamic counted loops Schedule transformation January 24, 2018 12 / 21



Code generation
domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

loop depths (telling where to insert an early exit), loop iterators and
associated predicate list (constructing the conditions) are known.
Whether a loop is dynamic counted can be determined.
Generate goto (with a label counter) for GPUs or change back to
dynamic bounds for CPUs.

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 13 / 21



Code generation
domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

loop depths (telling where to insert an early exit), loop iterators and
associated predicate list (constructing the conditions) are known.

Whether a loop is dynamic counted can be determined.
Generate goto (with a label counter) for GPUs or change back to
dynamic bounds for CPUs.

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 13 / 21



Code generation
domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

loop depths (telling where to insert an early exit), loop iterators and
associated predicate list (constructing the conditions) are known.
Whether a loop is dynamic counted can be determined.

Generate goto (with a label counter) for GPUs or change back to
dynamic bounds for CPUs.

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 13 / 21



Code generation
domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

loop depths (telling where to insert an early exit), loop iterators and
associated predicate list (constructing the conditions) are known.
Whether a loop is dynamic counted can be determined.
Generate goto (with a label counter) for GPUs or change back to
dynamic bounds for CPUs.

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 13 / 21



Code generation

On GPUs, dynamic counted loops are enforced by goto statements,
skipping empty iterations.

On CPUs, dynamic conditions are taken back.

Why different code generation templates are needed?
I On GPUs, threads, thread blocks, need fix bounds.
I On CPUs, early exits like goto are not allowed.

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 14 / 21



Code generation
for (i=0; i<N; i++) {

for (j=0; j<u1; j++) {

for (k=0; k<u2; k++) {

for (...) {

S0: m = f(i);

S1: n = g(i);

...

Sn: if (j<m&&k<n&&...)

S(i, j, k, ...);

...

}

...

if (k>=n)

goto label_u_2;

}

label_u_2: ;

if (j>=m)

goto label_u_1;

}

label_u_1: ;

}

code generation template for GPUs

#pragma omp parallel for

for (i=0; i<N; i++) {

S0: m = f(i);

S1: n = g(i);

...

for (j=0; j<m; j++) {

for (k=0; k<n; k++) {

for (...) {

Sn: S(i, j, k, ...);

}

}

}

}

code generation template for CPUs

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 14 / 21



Code generation

SpMV CSR code

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

y[i] += A[j]*x[col[j]];

}

for (ii=0; ii<N/4; ii+=4){

S0:m=idx[ii+1]-idx[ii];

for (jj=0; jj<m/8; jj+=8)

for (i=0; i<=min(3,N-ii); i++)

for (j=0; j<=min(7,m-jj); j

++)

S1: y[ii+i] += A[jj+j]*x[col[jj

+j]];

}

for (ii=32*b0; ii <N; ii +=8192) {

for (jj=32*b1; jj <u; jj +=8192) {

for (i=t0; i<=min(31,N-ii); i+=32)

for(j=t1; i<=min(31,u-jj); i+=32) {

S0: m = idx[ii+i+1] - idx[ii+i];

S1: if (jj+j<m)

y[ii+i] += A[jj+j]*x[col[jj+j]];

if (jj+j>=m)

goto label0;

}label0: ;

if (jj >=m)

goto label1;

}label1: ;

}

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 15 / 21



Code generation

SpMV CSR code

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

y[i] += A[j]*x[col[j]];

}

for (ii=0; ii<N/4; ii+=4){

S0:m=idx[ii+1]-idx[ii];

for (jj=0; jj<m/8; jj+=8)

for (i=0; i<=min(3,N-ii); i++)

for (j=0; j<=min(7,m-jj); j

++)

S1: y[ii+i] += A[jj+j]*x[col[jj

+j]];

}

for (ii=32*b0; ii <N; ii +=8192) {

for (jj=32*b1; jj <u; jj +=8192) {

for (i=t0; i<=min(31,N-ii); i+=32)

for(j=t1; i<=min(31,u-jj); i+=32) {

S0: m = idx[ii+i+1] - idx[ii+i];

S1: if (jj+j<m)

y[ii+i] += A[jj+j]*x[col[jj+j]];

if (jj+j>=m)

goto label0;

}label0: ;

if (jj >=m)

goto label1;

}label1: ;

}

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 15 / 21



Code generation

SpMV CSR code

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

y[i] += A[j]*x[col[j]];

}

for (ii=0; ii<N/4; ii+=4){

S0:m=idx[ii+1]-idx[ii];

for (jj=0; jj<m/8; jj+=8)

for (i=0; i<=min(3,N-ii); i++)

for (j=0; j<=min(7,m-jj); j

++)

S1: y[ii+i] += A[jj+j]*x[col[jj

+j]];

}

for (ii=32*b0; ii <N; ii +=8192) {

for (jj=32*b1; jj <u; jj +=8192) {

for (i=t0; i<=min(31,N-ii); i+=32)

for(j=t1; i<=min(31,u-jj); i+=32) {

S0: m = idx[ii+i+1] - idx[ii+i];

S1: if (jj+j<m)

y[ii+i] += A[jj+j]*x[col[jj+j]];

if (jj+j>=m)

goto label0;

}label0: ;

if (jj >=m)

goto label1;

}label1: ;

}

Polyhedral compilation of dynamic counted loops Code generation January 24, 2018 15 / 21



General applicability

Affine transformations: loop tiling, skewing, shifting, interchange, etc.
Special cases have to be taken to handle loop fusion.

for (i=0; i<N; i++) {

for(j=0; j<u1; j++) {

S0: m=f(i);

if(j<m);

S1: S1(i,j);

}

}

for (i=0; i<N; i++) {

for(j=0; j<u2; j++) {

S2: n=g(i);

if(j<n);

S3: S3(i,j);

}

}

Before fusion

for (i=0; i<N; i++) {

for(j=0; j<max(u1,u2); j++) {

S0: m=f(i);

S2: n=g(i);

if(j<m);

S1: S1(i,j);

if(j<n);

S3: S3(i,j);

if(j>=m && j>=n)

goto label0;

}label0: ;

}

After fusion

A normal loop can be treated as a specific case of dynamic counted
loop by reasoning on its static upper bound as a predicate.

Polyhedral compilation of dynamic counted loops General applicability January 24, 2018 16 / 21



General applicability

Affine transformations: loop tiling, skewing, shifting, interchange, etc.

Special cases have to be taken to handle loop fusion.

for (i=0; i<N; i++) {

for(j=0; j<u1; j++) {

S0: m=f(i);

if(j<m);

S1: S1(i,j);

}

}

for (i=0; i<N; i++) {

for(j=0; j<u2; j++) {

S2: n=g(i);

if(j<n);

S3: S3(i,j);

}

}

Before fusion

for (i=0; i<N; i++) {

for(j=0; j<max(u1,u2); j++) {

S0: m=f(i);

S2: n=g(i);

if(j<m);

S1: S1(i,j);

if(j<n);

S3: S3(i,j);

if(j>=m && j>=n)

goto label0;

}label0: ;

}

After fusion

A normal loop can be treated as a specific case of dynamic counted
loop by reasoning on its static upper bound as a predicate.

Polyhedral compilation of dynamic counted loops General applicability January 24, 2018 16 / 21



General applicability

Affine transformations: loop tiling, skewing, shifting, interchange, etc.
Special cases have to be taken to handle loop fusion.

for (i=0; i<N; i++) {

for(j=0; j<u1; j++) {

S0: m=f(i);

if(j<m);

S1: S1(i,j);

}

}

for (i=0; i<N; i++) {

for(j=0; j<u2; j++) {

S2: n=g(i);

if(j<n);

S3: S3(i,j);

}

}

Before fusion

for (i=0; i<N; i++) {

for(j=0; j<max(u1,u2); j++) {

S0: m=f(i);

S2: n=g(i);

if(j<m);

S1: S1(i,j);

if(j<n);

S3: S3(i,j);

if(j>=m && j>=n)

goto label0;

}label0: ;

}

After fusion

A normal loop can be treated as a specific case of dynamic counted
loop by reasoning on its static upper bound as a predicate.

Polyhedral compilation of dynamic counted loops General applicability January 24, 2018 16 / 21



General applicability

Affine transformations: loop tiling, skewing, shifting, interchange, etc.
Special cases have to be taken to handle loop fusion.

for (i=0; i<N; i++) {

for(j=0; j<u1; j++) {

S0: m=f(i);

if(j<m);

S1: S1(i,j);

}

}

for (i=0; i<N; i++) {

for(j=0; j<u2; j++) {

S2: n=g(i);

if(j<n);

S3: S3(i,j);

}

}

Before fusion

for (i=0; i<N; i++) {

for(j=0; j<max(u1,u2); j++) {

S0: m=f(i);

S2: n=g(i);

if(j<m);

S1: S1(i,j);

if(j<n);

S3: S3(i,j);

if(j>=m && j>=n)

goto label0;

}label0: ;

}

After fusion

A normal loop can be treated as a specific case of dynamic counted
loop by reasoning on its static upper bound as a predicate.

Polyhedral compilation of dynamic counted loops General applicability January 24, 2018 16 / 21



General applicability

Affine transformations: loop tiling, skewing, shifting, interchange, etc.
Special cases have to be taken to handle loop fusion.

for (i=0; i<N; i++) {

for(j=0; j<u1; j++) {

S0: m=f(i);

if(j<m);

S1: S1(i,j);

}

}

for (i=0; i<N; i++) {

for(j=0; j<u2; j++) {

S2: n=g(i);

if(j<n);

S3: S3(i,j);

}

}

Before fusion

for (i=0; i<N; i++) {

for(j=0; j<max(u1,u2); j++) {

S0: m=f(i);

S2: n=g(i);

if(j<m);

S1: S1(i,j);

if(j<n);

S3: S3(i,j);

if(j>=m && j>=n)

goto label0;

}label0: ;

}

After fusion

A normal loop can be treated as a specific case of dynamic counted
loop by reasoning on its static upper bound as a predicate.

Polyhedral compilation of dynamic counted loops General applicability January 24, 2018 16 / 21



Setup and methodology

Input: C programs with Pencil extensions

Code generator: PPCG (ppcg-0.05-197-ge774645-pencilcc)

Output:
I CUDA code for GPUs
I OpenMP code for CPUs

Architectures:
I GPUs: NVIDIA Quadro K4000
I CPUs: 12-core Intel Xeon(R) E5-2630 v2 @2.60GHz

Compilation:
I CUDA code: nvcc7.5.15 (-O3)
I OpenMP code: icc17.0.0 (-Ofast -fstrict-aliasing -qopenmp)

Methodology: Run each benchmark 9 times and retain the median
value.

Experimental results Setup and methodology January 24, 2018 17 / 21



Evaluation on GPUs

16 32 64 128 256 512 1024

6

12

18

24

0
.2

1

0
.2

8

0
.3

0
.3

1

0
.2

7

0
.2

6

0
.2

5

BLOCK SIZE

S
p

ee
d

u
p

Pencil With data transfer Without data transfer

Performance of the HOG descriptor on GPU

BLOCK SIZE : defines the size of an image block.

Our technique can obtain a speedup ranging from 4.4× to 23.3× while PPCG suffers
from a degradation by about 75%, illustrating the importance of parallelizing and
optimizing dynamic counted loops.

Experimental results Evaluation on GPUs January 24, 2018 18 / 21



Evaluation on GPUs

test train ref

1

1.5

2

2.5

Problem Size

S
p

ee
d

u
p

baseline 2D band (2+1)D band 3D band

Performance of equake on GPU

2D: a 2-dimensional permutable band on the dynamic counted loop, enabling unrolling.

(2 + 1)D: a 2-dimensional outer band and an inner band (dynamic counted loop),
enabling interchange.

3D: a 3-dimensional permutable band on the dynamic counted loop, enabling fusion.

Handling dynamic counted loops enables more loop transformations, leading to
performance improvements in each case.

Experimental results Evaluation on GPUs January 24, 2018 18 / 21



Evaluation on GPUs

ca
nt

co
nsp

h

co
p20

A

m
ac

ec
on

fw
d50

0

m
c2

dep
i

pdb1H
YS

Pre
ss

Poi
ss

on
pw

tk

rm
a1

0

to
m

og
ra

phic
1

1

2

3

4

P
er

fo
rm

a
n

ce
/

G
fl

o
p

s
Venkat CUSP Our work Our work+Executor

Performance of the CSR SpMV on GPU

Pencil extension is used to deal with indirect accesses (subscripts of subscripts).

Our technique enables tiling automatically, neither resorting to transformations like
make-dense, compact-and-pad, etc, nor assuming the tiling sizes are divisible by loop
iteration times like Venkat et al.’s work [VHS15].

Our technique can also apply to the executor of Venkat et al.’s work [VHS15] as a
complementary optimization.

Experimental results Evaluation on GPUs January 24, 2018 18 / 21



Evaluation on GPUs

ca
nt

co
nsp

h

co
p20

A

m
ac

ec
on

fw
d50

0

m
c2

dep
i

pdb1H
YS

Pre
ss

Poi
ss

on
pw

tk

rm
a1

0

to
m

og
ra

phic
1

1

3

5

7

P
er

fo
rm

a
n

ce
/

G
fl

o
p

s
Venkat CUSP Our work Our work+Executor

Performance of the ELL SpMV on GPU

Venkat et al. [VHS15] derived ELL from CSR by tiling the dynamic counted loop with the
maximum number of nonzero entries in a row. No early exit statements exist in their code.

Our technique emits early exit statements when there are fewer non-zeros in a row,
minimizing the number of iterations of the dynamic counted loop.

The CUSP library [BG09] encounters a format conversion with some input matrices, while
our technique remains applicable on all formats.

Experimental results Evaluation on GPUs January 24, 2018 18 / 21



Evaluation on CPUs

16 32 64 128 256 512 1024

1

2

BLOCK SIZE

S
p

ee
d

u
p

Pencil Our work

Performance of the HOG descriptor on CPU

The original dynamic condition can be taken back when generating OpenMP code on
CPU architectures, avoiding the combination of nested bands and the refactoring of the
control flow.

Our technique enables aggressive loop transformations including tiling, interchange, etc.,
leading to a better performance when these optimizations are turned on.

Experimental results Evaluation on CPUs January 24, 2018 19 / 21



Evaluation on CPUs

test train ref

0.4

0.8

1.2

1.6

Problem Size

S
p

ee
d

u
p

baseline 2D band (2+1)D band 3D band

Performance of equake on CPU

The original dynamic condition can be taken back when generating OpenMP code on
CPU architectures, avoiding the combination of nested bands and the refactoring of the
control flow.

Our technique enables aggressive loop transformations including tiling, interchange, etc.,
leading to a better performance when these optimizations are turned on.

Experimental results Evaluation on CPUs January 24, 2018 19 / 21



Evaluation on CPUs

ca
nt

co
nsp

h

co
p20

A

m
ac

ec
on

fw
d50

0

m
c2

dep
i

pdb1H
YS

Pre
ss

Poi
ss

on
pw

tk

rm
a1

0

to
m

og
ra

phic
1

0.2

0.4

0.6

P
er

fo
rm

a
n

ce
/

G
fl

o
p

s
Venkat Our work Our work+Executor

Performance of the CSR SpMV on CPU

The original dynamic condition can be taken back when generating OpenMP code on
CPU architectures, avoiding the combination of nested bands and the refactoring of the
control flow.

Our technique enables aggressive loop transformations including tiling, interchange, etc.,
leading to a better performance when these optimizations are turned on.

Experimental results Evaluation on CPUs January 24, 2018 19 / 21



Evaluation on CPUs

ca
nt

co
nsp

h

co
p20

A

m
ac

ec
on

fw
d50

0

m
c2

dep
i

pdb1H
YS

Pre
ss

Poi
ss

on
pw

tk

rm
a1

0

to
m

og
ra

phic
1

0.2

0.4

0.6

P
er

fo
rm

a
n

ce
/

G
fl

o
p

s
Venkat Our work Our work+Executor

Performance of the ELL SpMV on CPU

The original dynamic condition can be taken back when generating OpenMP code on
CPU architectures, avoiding the combination of nested bands and the refactoring of the
control flow.

Our technique enables aggressive loop transformations including tiling, interchange, etc.,
leading to a better performance when these optimizations are turned on.

Experimental results Evaluation on CPUs January 24, 2018 19 / 21



Conclusion

We model control dependences on data-dependent predicates by
revisiting the work of Benabderrahmane et al. [BPCB10].

Our technique does not resort to more expressive first-order logic with
non-interpreted functions/predicates, like [SCF03, SLC+16].

We implement a schedule-tree-based algorithm to fully automate the
framework.

Our work provides code generation templates for multiple scenarios,
including the inspector-executor scheme [VHS15].

We show an in-depth performance comparison with the state of the
art, with both CPU and GPU platforms being taken into
consideration.

Conclusion January 24, 2018 20 / 21



References

I Nathan Bell and Michael Garland.
Implementing sparse matrix-vector multiplication on throughput-oriented processors.
In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, page No. 18. ACM,
2009.

I Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul.
The polyhedral model is more widely applicable than you think.
In Proceedings of 19th International Conference on Compiler Construction, pages 283–303. Springer, 2010.

I Michelle Mills Strout, Larry Carter, and Jeanne Ferrante.
Compile-time composition of run-time data and iteration reorderings.
In Proceedings of the ACM SIGPLAN 2003 conference on Programming Language Design and Implementation, pages
91–102. ACM, 2003.

I Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck, and Catherine Olschanowsky.
An approach for code generation in the sparse polyhedral framework.
Parallel Computing, 53:32–57, 2016.

I Anand Venkat, Mary Hall, and Michelle Strout.
Loop and data transformations for sparse matrix code.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
521–532, 2015.

Conclusion January 24, 2018 21 / 21


	Introduction
	Dynamic counted loops
	Examples
	The polyhedral model

	Polyhedral compilation of dynamic counted loops
	Program analysis
	Schedule tree
	Schedule transformation
	Code generation
	General applicability

	Experimental results
	Setup and methodology
	Evaluation on GPUs
	Evaluation on CPUs

	Conclusion

