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Dynamic counted loops

What are dynamic counted loops?

Definition

Counted loops with dynamic data-dependent bounds are counted loops
(a.k.a. do loops in Fortran) with numerical constant strides, whose lower
and/or upper bound may not be an affine function of enclosing loop
counters and loop-invariant parameters

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++) // dynamically computed bounds

S2: S(i, j);

}
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Dynamic counted loops

Why are we interested in the class of loop nest kernels involving dynamic

counted loops?

dynamic counted loops are less expressive than general while
loops.

Less expressive/general control flow enables more aggressive
optimizations.

Building on the state of the art polyhedral optimization of while
loops by Benabderrahmane et al. [BPCB10], but the authors’ efficient
code generation algorithm is not completely described.

[BPCB10] is constrained by inductive dependences on exit conditions
which limit affine transformations and parallelization.
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Comparison with general while loops

for (i=0; i<N; i++) {

S0: condition = ...;

while (condition) {

S1: condition = ...;

S2: S;

}

}

A general while loop

S1

S0

S2

es1→s1

es0→s1

for (i=0; i<N; i++) {

S0: m = condition;

for (j=0; j<m; j++)

S1: S;

}

A dynamic counted loop

S1

S0

es0→s1
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Real-life examples of dynamic counted loops

Dynamic counted loops play an important role in numerical solvers, media
processing applications, data analytics, etc. They can be found in

Dynamic programming

Histogram of oriented gradients

Finite element method

Sparse matrix-vector/matrix-matrix multiplications

...
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The polyhedral model

The polyhedral model represents a program and its semantics using iteration
domains, access relations, dependences and schedules.

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

Iteration domain:
{S0(i) : 0 ≤ i < N; S1(i) : 0 ≤ i < N; S2(i) : 0 ≤ i < N}

Access relation:
I Write: {S0(i)→ lb : 0 ≤ i < N; S1(i)→ ub : 0 ≤ i < N}
I Read: {}

Dependence: {}a

Schedule: [S0(i)→ (i , 0);S1(i)→ (i , 1);S2(i)→ (i , 2)]

aConsider only true/flow dependences.
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The polyhedral model

The polyhedral model is not able to classify the whole loop nest as a static
control part (SCoP).
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The polyhedral model

The polyhedral model is not able to classify the whole loop nest as a static
control part (SCoP).

Our purpose is to extend the polyhedral model to handle dynamic counted
loops and generate code for both general-purpose multicores and heteroge-
neous accelerators.
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Program analysis

Preprocessing
I Subtract (dynamic) lower bounds.
I Synthesize static upper bounds (static analysis or dynamic inspector).

for (i=0; i<N; i++) {

S0: lb = idx[i];

S1: ub = idx[i+1];

for (j=lb; j<ub; j++)

S2: S(i, j);

}

for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<m; j++)

S1: S(i, j+idx[i]);

}

Modeling control dependences
I Insert an exit predicate.
I Delay the introduction of early exit.
I Sink the dynamic conditions when targeting on GPUs.
for (i=0; i<N; i++) {

S0: m = idx[i+1] - idx[i];

for (j=0; j<u; j++)

S1: if (j<m)

S(i, j+idx[i]);

}

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}
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Program analysis

for (i=0; i<N; i++) {

for (j=idx[i]; j<idx[i+1]; j++)

S1: S(i, j);

}

Before preprocessing

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

After preprocessing

Polyhedral representation (schedule tree)

domain

{S1(i)}

S1(i)→ (i)

domain

{S0(i , j);S1(i , j)}

S0(i , j)→ (i);S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)
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Loop transformations like tiling would be impossible for the original code.
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Schedule tree

domain

{S0(i , j); S1(i , j)}

S0(i , j)→ (i); S1(i , j)→ (i); S0(i , j)→ (j); S1(i , j)→ (j)

sequence

S0(i , j) S1(i , j)

Core node types
I Domain: set of statement instances to be scheduled
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence/Set: children executed in given/arbitrary order

Convenience node types
I Mark: attach additional information to subtrees
I Extension: add additional domain elements to facilitate non-polyhedral

semantics
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Schedule transformation

Schedule generation
I Apply any affine transformation, e.g., a variant of the Pluto algorithm.
I Insert a mark node below each band node associated with a

dynamically counted loop.

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

S(i, j+idx[i]);

}

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

sequence

S0(i, j) S1(i, j)

domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i); S1(i, j) → (i); S0(i, j) → (j); S1(i, j) → (j)

mark: “dynamic counted loop”

sequence

S0(i, j) S1(i, j)
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Schedule generation
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Schedule transformation
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Extension nodes are inserted everywhere an early exit statement may be
needed, associated with the loop depth.
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Code generation
domain

{S0(i, j); S1(i, j)}

S0(i, j) → (i/4); S1(i, j) → (i/4)

extension: “[i0] → exit()”

S0(i, j) → (j/8); S1(i, j) → (j/8)

extension: “[i0, i1] → exit()”

S0(i, j) → (i); S1(i, j) → (i)

extension: “[i0, i1, i2] → exit()”

S0(i, j) → (j); S1(i, j) → (j)

extension: “[i0, i1, i2, i3] → exit()”

sequence

S0(i, j) S1(i, j)

loop depths (telling where to insert an early exit), loop iterators and
associated predicate list (constructing the conditions) are known.
Whether a loop is dynamic counted can be determined.
Generate goto (with a label counter) for GPUs or change back to
dynamic bounds for CPUs.
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Code generation

On GPUs, dynamic counted loops are enforced by goto statements,
skipping empty iterations.

On CPUs, dynamic conditions are taken back.

Why different code generation templates are needed?
I On GPUs, threads, thread blocks, need fix bounds.
I On CPUs, early exits like goto are not allowed.
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Code generation
for (i=0; i<N; i++) {

for (j=0; j<u1; j++) {

for (k=0; k<u2; k++) {

for (...) {

S0: m = f(i);

S1: n = g(i);

...

Sn: if (j<m&&k<n&&...)

S(i, j, k, ...);

...

}

...

if (k>=n)

goto label_u_2;

}

label_u_2: ;

if (j>=m)

goto label_u_1;

}

label_u_1: ;

}

code generation template for GPUs

#pragma omp parallel for

for (i=0; i<N; i++) {

S0: m = f(i);

S1: n = g(i);

...

for (j=0; j<m; j++) {

for (k=0; k<n; k++) {

for (...) {

Sn: S(i, j, k, ...);

}

}

}

}

code generation template for CPUs
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Code generation

SpMV CSR code

for (i=0; i<N; i++)

for (j=0; j<u; j++) {

S0: m = idx[i+1] - idx[i];

S1: if (j<m)

y[i] += A[j]*x[col[j]];

}

for (ii=0; ii<N/4; ii+=4){

S0:m=idx[ii+1]-idx[ii];

for (jj=0; jj<m/8; jj+=8)

for (i=0; i<=min(3,N-ii); i++)

for (j=0; j<=min(7,m-jj); j

++)

S1: y[ii+i] += A[jj+j]*x[col[jj

+j]];

}

for (ii=32*b0; ii <N; ii +=8192) {

for (jj=32*b1; jj <u; jj +=8192) {

for (i=t0; i<=min(31,N-ii); i+=32)

for(j=t1; i<=min(31,u-jj); i+=32) {

S0: m = idx[ii+i+1] - idx[ii+i];

S1: if (jj+j<m)

y[ii+i] += A[jj+j]*x[col[jj+j]];

if (jj+j>=m)

goto label0;

}label0: ;

if (jj >=m)

goto label1;

}label1: ;

}
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General applicability

Affine transformations: loop tiling, skewing, shifting, interchange, etc.
Special cases have to be taken to handle loop fusion.

for (i=0; i<N; i++) {

for(j=0; j<u1; j++) {

S0: m=f(i);

if(j<m);

S1: S1(i,j);

}

}

for (i=0; i<N; i++) {

for(j=0; j<u2; j++) {

S2: n=g(i);

if(j<n);

S3: S3(i,j);

}

}

Before fusion

for (i=0; i<N; i++) {

for(j=0; j<max(u1,u2); j++) {

S0: m=f(i);

S2: n=g(i);

if(j<m);

S1: S1(i,j);

if(j<n);

S3: S3(i,j);

if(j>=m && j>=n)

goto label0;

}label0: ;

}

After fusion

A normal loop can be treated as a specific case of dynamic counted
loop by reasoning on its static upper bound as a predicate.
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Setup and methodology

Input: C programs with Pencil extensions

Code generator: PPCG (ppcg-0.05-197-ge774645-pencilcc)

Output:
I CUDA code for GPUs
I OpenMP code for CPUs

Architectures:
I GPUs: NVIDIA Quadro K4000
I CPUs: 12-core Intel Xeon(R) E5-2630 v2 @2.60GHz

Compilation:
I CUDA code: nvcc7.5.15 (-O3)
I OpenMP code: icc17.0.0 (-Ofast -fstrict-aliasing -qopenmp)

Methodology: Run each benchmark 9 times and retain the median
value.
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Evaluation on GPUs
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Performance of the HOG descriptor on GPU

BLOCK SIZE : defines the size of an image block.

Our technique can obtain a speedup ranging from 4.4× to 23.3× while PPCG suffers
from a degradation by about 75%, illustrating the importance of parallelizing and
optimizing dynamic counted loops.
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Evaluation on GPUs
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2D: a 2-dimensional permutable band on the dynamic counted loop, enabling unrolling.

(2 + 1)D: a 2-dimensional outer band and an inner band (dynamic counted loop),
enabling interchange.

3D: a 3-dimensional permutable band on the dynamic counted loop, enabling fusion.

Handling dynamic counted loops enables more loop transformations, leading to
performance improvements in each case.
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Performance of the CSR SpMV on GPU

Pencil extension is used to deal with indirect accesses (subscripts of subscripts).

Our technique enables tiling automatically, neither resorting to transformations like
make-dense, compact-and-pad, etc, nor assuming the tiling sizes are divisible by loop
iteration times like Venkat et al.’s work [VHS15].

Our technique can also apply to the executor of Venkat et al.’s work [VHS15] as a
complementary optimization.
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Performance of the ELL SpMV on GPU

Venkat et al. [VHS15] derived ELL from CSR by tiling the dynamic counted loop with the
maximum number of nonzero entries in a row. No early exit statements exist in their code.

Our technique emits early exit statements when there are fewer non-zeros in a row,
minimizing the number of iterations of the dynamic counted loop.

The CUSP library [BG09] encounters a format conversion with some input matrices, while
our technique remains applicable on all formats.
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Evaluation on CPUs

16 32 64 128 256 512 1024

1

2

BLOCK SIZE

S
p

ee
d

u
p

Pencil Our work
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The original dynamic condition can be taken back when generating OpenMP code on
CPU architectures, avoiding the combination of nested bands and the refactoring of the
control flow.

Our technique enables aggressive loop transformations including tiling, interchange, etc.,
leading to a better performance when these optimizations are turned on.
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The original dynamic condition can be taken back when generating OpenMP code on
CPU architectures, avoiding the combination of nested bands and the refactoring of the
control flow.

Our technique enables aggressive loop transformations including tiling, interchange, etc.,
leading to a better performance when these optimizations are turned on.
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leading to a better performance when these optimizations are turned on.
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Conclusion

We model control dependences on data-dependent predicates by
revisiting the work of Benabderrahmane et al. [BPCB10].

Our technique does not resort to more expressive first-order logic with
non-interpreted functions/predicates, like [SCF03, SLC+16].

We implement a schedule-tree-based algorithm to fully automate the
framework.

Our work provides code generation templates for multiple scenarios,
including the inspector-executor scheme [VHS15].

We show an in-depth performance comparison with the state of the
art, with both CPU and GPU platforms being taken into
consideration.
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