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Background - Operator Fusion

Vectorized operations across multiple operators can be fused into a single vectorized operation.

This improves GPU utilization, reduces kernel launch overhead, and minimizes memory access costs.

__global__ mul(float *x0, float *x1, float *y){
   int idx = blockIdx.x * blockDim.x + threadIdx.x;
   y[idx] = x0[idx] * x1[idx];
 }
 __global__ add(float *x0, float *x1, float *y){
   int idx = blockIdx.x * blockDim.x + threadIdx.x;
   y[idx] = x0[idx] + x1[idx];
 }

__global__ fused_muladd(float *x0, float *x1, float *x2, 
float *y){

int idx = blockIdx.x * blockDim.x + threadIdx.x;
y[idx] = x0[idx] * x1[idx] + x2[idx];

}



Background - Operator Fusion (Sibling)

By merging input tensors into a larger tensor, identical operators can be fused 

into a larger operator, effectively enhancing hardware parallelism.



Background - Operator Fusion

ML compilers make fusion decisions (e.g., pattern match) according to whether they can generate 

efficient code. 

For example, TVM/XLA’s code generators deal with all data dependencies with per-element 

input inline to merge producer with consumer together.

Element-level Dependencies:

Graph-level Dependencies:
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What if it's non-one-to-one? What if it's non-sibling?



Motivation

Illustration of two kinds of dependency 

analysis:
• Operator-Level View:
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Kernel fusion improves efficiency but struggles with complex 

dependencies.

After inlining:

𝑬𝟎 = 𝑪𝟎 ∙ 𝑫𝟎 + 𝑪𝟏 ∙ 𝑫𝟐
𝑬𝟎 = (𝑨𝟎∙ 𝑩𝟎 + 𝑨𝟏 ∙ 𝑩𝟐) ∙ 𝑫𝟎 + (𝑨𝟎∙ 𝑩𝟏 + 𝑨𝟏 ∙ 𝑩𝟑) ∙ 𝑫𝟐

Also inlined by E1



Motivation - What happens after fusion?

Two ways to handle data dependency after operator fusion: 

• (1) using global memory

• (2) using redundant computation

Source #1: Inefficient Data Access and Redundant Computation

Avoiding low-bandwidth memory 

access is possible but incurs 

unacceptable costs due to redundant 

computation

Typical inefficient data access in 

AStitch when fusing two GEMMs using 

global memory



Motivation

Typical idle resource issues arise from the tail effect in the execution of 

compute-intensive operators.

Source #2: Missed Opportunities for Improving Parallelism



Motivation - Static vs Block Dependency

Existing solutions: Static analysis 

approach:

Traditional data dependency analyses are 

based on (1) the study of tensor 

expressions and (2) computation graphs.

Problem: Existing static analysis cannot 

capture block-level dependencies.

Static Data Dependency: analysis 

only based on data flow

Block Dependency: analysis 

with additional thread block 

mapping



Motivation - Block Dependency Abstraction 
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)Observations & Potential Optimizations:

• Source #1 : One-to-one block dependencies allow fusion 

with shared memory.

• Source #2 : Some blocks in GEMM1 do not depend on 

all blocks in GEMM0, enabling parallel execution.

These optimization opportunities necessitate block-level 

dependencies.



Motivation - Block Dependency Abstraction 
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Data dependency between blocks

Inefficient data access 
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Inefficiencies in real-world workloads：



Motivation - Block Dependency Abstraction 
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Overview

System overview of BlockDepend

• The process begins with ONNX Models, which is optimized at the graph level based on static data 

dependencies using NNFusion, and then converted to an intermediate representation (TE). 

• TE is processed by the construction algorithms in Roller.



STEP 1 - Identifying Block Dependencies

Stage-1: Obtain mapping(CalculateBlockID) from 

an element’s index to its producer’s block ID.

Stage-2: A consumer block uses CalculateBlockID to 

determine the dependent producer block ID based on 

the element’s index it accesses.



STEP 2 - Dependency-Driven Optimization Analysis

Four Block Dependency Types:

• One-to-One Block Dependency (b)

• Many-to-Many Block Dependency (c)

• Partial Block Independence (d)

• Full Block Independence (e)



STEP 3 - Code Optimization

Kernel after fusion A case study of the kernel template used to generate 

a fused kernel for parallel optimization 

One-to-One Block Dependency:

Data Reuse Optimization

Full Block Independence:

Parallel Kernel Fusion

In the new kernel, intermediate results are reused 

in shared memory, reducing global memory 

access and the number of kernel launches.
Various implementations are executed based on the 

block’s serial number, enabling block-level fusion for 

improved GPU utilization.



STEP 3 - Code Optimization

Many-to-Many Block Dependency:

Kernel Splitting and Refactoring Optimization

Our strategies enhance the utilization of parallel computing 

resources and reduce the number of waves.

Execute 2 GEMM ops (4 waves) in one stream 

Execute 4 reorganized ops (4 waves) in one stream 

Execute 4 reorganized ops (3 waves) in two parallel streams 



STEP 3 - Code Optimization

Partial Block Independence:

Data Prefetching

Our approach introduces L2 cache management and partition-

aware prefetching optimizations not found incurrent MLCs, enabling 

more efficient memory access.
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Experiment

Baselines：

• ONNX Runtime v1.14.0, PyTorch v1.12, PyTorch XLA v2.2, TensorRT v8.5.3, TVM 

v0.12, Welder, BladeDISC v0.4.0 (AStitch), MIGraphX v2.4 (AMD)

• Libraries: CUTLASS 3.1, xFormers v0.0.29

Configurations:

• PyTorch: JIT optimization enabled

• TVM: Ansor for kernel tuning

Evaluation Setup:

• 1,000+ iterations per workload, results averaged

• Warm-ups included for accuracy



Experiment

Platforms:

• NVIDIA 40GB A100 GPU, CUDA 12.0, cuDNN v8.7.0

• AMD Radeon MI100 GPU, ROCm 5.4.3

DNN Workloads:

• 12 DNN models tested:

• BERT, NeRF, Swin-Transformer, ViT, Conformer

• NAFNet, BSRN, MMoE, MetaHeac, SparseMLP

• GPT-3, LLaMA

• SparseMLP derived from Switch-Transformer

• All workloads in FP16 precision



Experiment

• BlockDepend’s significant performance advantage over other systems.

• Compared to TensorRT, BlockDepend achieves speedups from 1.04 to 3.47×, averaging at 1.71×.

End-to-end model inference performance on NVIDIA A100 GPU
Baselines expressed as the normalized speedup relative to the best result (BlockDepend)



Experiment

Performance improvement in GPT-3 and LLaMA

core structures (M: MLP; A: Attention) on an NVIDIA A100.

• BlockDepend effectively leverages block-level optimization to reduce idle 

resources during kernel execution and enhance execution efficiency.



Experiment

• BlockDepend(Base): BlockDepend without any inter-operator 

optimization

• BlockDepend(Base+SD): BlockDepend with optimizations based on 

static data dependency

• BlockDepend(Base+SD+BD): the fully optimized BlockDepend, 
with both previous and block-level optimizations

Performance improvement breakdown of BlockDepend



Experiment

Latency, kernel count, global results, long 

scoreboard, SM efficiency, and compute 

throughput for workloads with BlockDepend

optimizations

• BlockDepend(Base): BlockDepend

without any inter-operator optimization

• BlockDepend(Base+SD): BlockDepend

with optimizations based on static data 

dependency
• BlockDepend(Base+SD+BD): the fully 

optimized BlockDepend, with both 

previous and block-level optimizations



Experiment

End-to-end model inference performance on AMD MI100 GPU



Experiment

Compilation time on NVIDIA A100 GPU

BlockOpt time: The duration BlockDepend requires to optimize workloads

• BlockOpt achieves similar compilation times compared to non-

auto-tuned solutions such as TensorRT and BladeDISC.  



Conclusion

1. An in-depth analysis of existing problems in current compilers and the introduction 

of a novel (Block Dependency) abstraction to represent the potential dependency 

rselationships between parallel task units.

2. A compilation defect detection tool that identifies inefficiency issues based on the 

unique types of dependencies among different blocks.

3. A compilation optimization and code generation tool comprising four 

optimization methods targeting various inefficient scenarios, simultaneously 

addressing data locality and task parallelism limitations.

4. An implementation on both NVIDIA and AMD GPUs.
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