
Optimizing Deep Learning Inference Efficiency

through Block Dependency Analysis

Zhanyuan Di, Leping Wang, En Shao, Zhaojia Ma, Ziyi Ren, Feng Hua,

Lixian Ma, Jie Zhao, Guangming Tan, Ninghui Sun

30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ‘25)

SKLP, Institute of Computing Technology, CAS

University of Chinese Academy of Sciences

Hunan University

Background - Operator Fusion

Vectorized operations across multiple operators can be fused into a single vectorized operation.

This improves GPU utilization, reduces kernel launch overhead, and minimizes memory access costs.

__global__ mul(float *x0, float *x1, float *y){
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 y[idx] = x0[idx] * x1[idx];
 }
 __global__ add(float *x0, float *x1, float *y){
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 y[idx] = x0[idx] + x1[idx];
 }

__global__ fused_muladd(float *x0, float *x1, float *x2,
float *y){

int idx = blockIdx.x * blockDim.x + threadIdx.x;
y[idx] = x0[idx] * x1[idx] + x2[idx];

}

Background - Operator Fusion (Sibling)

By merging input tensors into a larger tensor, identical operators can be fused

into a larger operator, effectively enhancing hardware parallelism.

Background - Operator Fusion

ML compilers make fusion decisions (e.g., pattern match) according to whether they can generate

efficient code.

For example, TVM/XLA’s code generators deal with all data dependencies with per-element

input inline to merge producer with consumer together.

Element-level Dependencies:

Graph-level Dependencies:

𝑴𝟎 𝑨𝟎

𝑴𝟏 𝑨𝟏

……

𝑹𝟎

𝑴𝟎 𝑴𝟏 𝑴𝟐 ……

What if it's non-one-to-one? What if it's non-sibling?

Motivation

Illustration of two kinds of dependency

analysis:
• Operator-Level View:

𝐺𝐸𝑀𝑀0 𝐺𝐸𝑀𝑀1

𝑨𝟎 𝑨𝟏

𝑨𝟐 𝑨𝟑

𝑩𝟎 𝑩𝟏

𝑩𝟐 𝑩𝟑

𝑫𝟎 𝑫𝟏

𝑫𝟐 𝑫𝟑

𝑬𝟎 𝑬𝟏

𝑬𝟐 𝑬𝟑

𝑪𝟎 𝑪𝟏

𝑪𝟐 𝑪𝟑

𝑮𝟎 𝑮𝟏

• Element-Level View:

𝑪𝟎 𝑬𝟎

𝑬𝟏

……

……

……

Kernel fusion improves efficiency but struggles with complex

dependencies.

After inlining:

𝑬𝟎 = 𝑪𝟎 ∙ 𝑫𝟎 + 𝑪𝟏 ∙ 𝑫𝟐
𝑬𝟎 = (𝑨𝟎∙ 𝑩𝟎 + 𝑨𝟏 ∙ 𝑩𝟐) ∙ 𝑫𝟎 + (𝑨𝟎∙ 𝑩𝟏 + 𝑨𝟏 ∙ 𝑩𝟑) ∙ 𝑫𝟐

Also inlined by E1

Motivation - What happens after fusion?

Two ways to handle data dependency after operator fusion:

• (1) using global memory

• (2) using redundant computation

Source #1: Inefficient Data Access and Redundant Computation

Avoiding low-bandwidth memory

access is possible but incurs

unacceptable costs due to redundant

computation

Typical inefficient data access in

AStitch when fusing two GEMMs using

global memory

Motivation

Typical idle resource issues arise from the tail effect in the execution of

compute-intensive operators.

Source #2: Missed Opportunities for Improving Parallelism

Motivation - Static vs Block Dependency

Existing solutions: Static analysis

approach:

Traditional data dependency analyses are

based on (1) the study of tensor

expressions and (2) computation graphs.

Problem: Existing static analysis cannot

capture block-level dependencies.

Static Data Dependency: analysis

only based on data flow

Block Dependency: analysis

with additional thread block

mapping

Motivation - Block Dependency Abstraction

Time

Source #1 Inefficient data

access in One-to-One Block
Dependency

GEMM Reduction

O1 O1

Global
Memory

Source #2 Idle computing resources

in Many-to-Many Block Dependency

(S
M

s
/C

U
s
)

GEMM+Elem+Elem GEMM+Elem

Global
Memory O1O2 O2O1

K
e
rn

e
l L

a
u
n
ch

K
e
rn

e
l L

a
u
n
ch

(S
M

s
/C

U
s
)Observations & Potential Optimizations:

• Source #1 : One-to-one block dependencies allow fusion

with shared memory.

• Source #2 : Some blocks in GEMM1 do not depend on

all blocks in GEMM0, enabling parallel execution.

These optimization opportunities necessitate block-level

dependencies.

Motivation - Block Dependency Abstraction

MetaHeac(MoE)

G

Expert.1

R

G

Expert.2

R

Expert.3

(e)G

R

Expert.4

G

R

Expert.5

G

R

G

Two subgraphs in BERT and MoE models optimized via TensorRT

G

G E E

R GG E E

G E E

E E G

BERT

G E E G E

(b)

(d)

(c)

R

Reduction Operator, Softmax,

or Layernorm

Element-Wise Operator

(e.g. reshape, add)

E

GEMM Operator

Kernel After Fusion Optimized via TensorRT

Data dependency between blocks

Inefficient data access

① ②

Weight data access between

global memory and L2 cache

Memory access can be hidden by

pipeline

Idle computing resources

W1 W1

Inefficiencies in real-world workloads：

Motivation - Block Dependency Abstraction

Inefficient data access due to weight access in

Partial Block Independence

Global
Memory

L2 Cache W1 O1

W1

O1 W2

W2
Time

Reduction GEMM+Elem+Elem

Thread

Block

K
e
rn

e
l L

a
u
n
ch

I1

Fused Kernel
in TensorRT

Inefficient data access in One-

to-One Block Dependency

GEMM Reduction

O1 O1

Global
Memory

Idle computing resources in Many-

to-Many Block Dependency

O1
Global
Memory

K
e
rn

e
l L

a
u
n
ch

O2

K
e
rn

e
l L

a
u
n
ch

Reduction ReductionGEMM

K
e
rn

e
l L

a
u
n
ch

GEMM

(S
M

s
/C

U
s
)

GEMM+Elem+Elem GEMM+Elem

Global
Memory

①

①

②

②

O1O2 O2O1

Idle computing resources in Full Block
Independence (① & ②)

K
e
rn

e
l L

a
u
n
ch

K
e
rn

e
l L

a
u
n
ch

(S
M

s
/C

U
s
)

(S
M

s
/C

U
s
)

(S
M

s
/C

U
s
)

Block-Level

Dependency

Overview

System overview of BlockDepend

• The process begins with ONNX Models, which is optimized at the graph level based on static data

dependencies using NNFusion, and then converted to an intermediate representation (TE).

• TE is processed by the construction algorithms in Roller.

STEP 1 - Identifying Block Dependencies

Stage-1: Obtain mapping(CalculateBlockID) from

an element’s index to its producer’s block ID.

Stage-2: A consumer block uses CalculateBlockID to

determine the dependent producer block ID based on

the element’s index it accesses.

STEP 2 - Dependency-Driven Optimization Analysis

Four Block Dependency Types:

• One-to-One Block Dependency (b)

• Many-to-Many Block Dependency (c)

• Partial Block Independence (d)

• Full Block Independence (e)

STEP 3 - Code Optimization

Kernel after fusion A case study of the kernel template used to generate

a fused kernel for parallel optimization

One-to-One Block Dependency:

Data Reuse Optimization

Full Block Independence:

Parallel Kernel Fusion

In the new kernel, intermediate results are reused

in shared memory, reducing global memory

access and the number of kernel launches.
Various implementations are executed based on the

block’s serial number, enabling block-level fusion for

improved GPU utilization.

STEP 3 - Code Optimization

Many-to-Many Block Dependency:

Kernel Splitting and Refactoring Optimization

Our strategies enhance the utilization of parallel computing

resources and reduce the number of waves.

Execute 2 GEMM ops (4 waves) in one stream

Execute 4 reorganized ops (4 waves) in one stream

Execute 4 reorganized ops (3 waves) in two parallel streams

STEP 3 - Code Optimization

Partial Block Independence:

Data Prefetching

Our approach introduces L2 cache management and partition-

aware prefetching optimizations not found incurrent MLCs, enabling

more efficient memory access.

Global
Memory

L2 Cache W1 O1

W1

O1 W2

W2

Reduction GEMM+Elem+Elem

Thread

Block

K
e
rn

e
l L

a
u
n
ch

I1

Fused Kernel
in TensorRT

(S
M

s
/C

U
s
)

Experiment

Baselines：

• ONNX Runtime v1.14.0, PyTorch v1.12, PyTorch XLA v2.2, TensorRT v8.5.3, TVM

v0.12, Welder, BladeDISC v0.4.0 (AStitch), MIGraphX v2.4 (AMD)

• Libraries: CUTLASS 3.1, xFormers v0.0.29

Configurations:

• PyTorch: JIT optimization enabled

• TVM: Ansor for kernel tuning

Evaluation Setup:

• 1,000+ iterations per workload, results averaged

• Warm-ups included for accuracy

Experiment

Platforms:

• NVIDIA 40GB A100 GPU, CUDA 12.0, cuDNN v8.7.0

• AMD Radeon MI100 GPU, ROCm 5.4.3

DNN Workloads:

• 12 DNN models tested:

• BERT, NeRF, Swin-Transformer, ViT, Conformer

• NAFNet, BSRN, MMoE, MetaHeac, SparseMLP

• GPT-3, LLaMA

• SparseMLP derived from Switch-Transformer

• All workloads in FP16 precision

Experiment

• BlockDepend’s significant performance advantage over other systems.

• Compared to TensorRT, BlockDepend achieves speedups from 1.04 to 3.47×, averaging at 1.71×.

End-to-end model inference performance on NVIDIA A100 GPU
Baselines expressed as the normalized speedup relative to the best result (BlockDepend)

Experiment

Performance improvement in GPT-3 and LLaMA

core structures (M: MLP; A: Attention) on an NVIDIA A100.

• BlockDepend effectively leverages block-level optimization to reduce idle

resources during kernel execution and enhance execution efficiency.

Experiment

• BlockDepend(Base): BlockDepend without any inter-operator

optimization

• BlockDepend(Base+SD): BlockDepend with optimizations based on

static data dependency

• BlockDepend(Base+SD+BD): the fully optimized BlockDepend,
with both previous and block-level optimizations

Performance improvement breakdown of BlockDepend

Experiment

Latency, kernel count, global results, long

scoreboard, SM efficiency, and compute

throughput for workloads with BlockDepend

optimizations

• BlockDepend(Base): BlockDepend

without any inter-operator optimization

• BlockDepend(Base+SD): BlockDepend

with optimizations based on static data

dependency
• BlockDepend(Base+SD+BD): the fully

optimized BlockDepend, with both

previous and block-level optimizations

Experiment

End-to-end model inference performance on AMD MI100 GPU

Experiment

Compilation time on NVIDIA A100 GPU

BlockOpt time: The duration BlockDepend requires to optimize workloads

• BlockOpt achieves similar compilation times compared to non-

auto-tuned solutions such as TensorRT and BladeDISC.

Conclusion

1. An in-depth analysis of existing problems in current compilers and the introduction

of a novel (Block Dependency) abstraction to represent the potential dependency

rselationships between parallel task units.

2. A compilation defect detection tool that identifies inefficiency issues based on the

unique types of dependencies among different blocks.

3. A compilation optimization and code generation tool comprising four

optimization methods targeting various inefficient scenarios, simultaneously

addressing data locality and task parallelism limitations.

4. An implementation on both NVIDIA and AMD GPUs.

JCST Offic ia l WeC hat Accou nt

· China’s first English journal on computer

· Indexed in SCIE, EI, INSPEC, Scopus, DBLP, etc.

· Sponsored by ICT, CAS & China Computer Federation (CCF)

URL：https :/ / jcst .ict.ac.cn

E-mail：jcst@ict.ac.cn

Tel.：+86-10-62600340

Twitter：JCST_Journal

Thanks
E-mail : dizhanyuan20s@ict.ac.cn

mailto:dizhanyuan20s@ict.ac.cn

	Slide 1
	Slide 2: Background - Operator Fusion
	Slide 3: Background - Operator Fusion (Sibling)
	Slide 4: Background - Operator Fusion
	Slide 5: Motivation
	Slide 6: Motivation - What happens after fusion?
	Slide 7: Motivation
	Slide 8: Motivation - Static vs Block Dependency
	Slide 9: Motivation - Block Dependency Abstraction
	Slide 10: Motivation - Block Dependency Abstraction
	Slide 11: Motivation - Block Dependency Abstraction
	Slide 12: Overview
	Slide 13: STEP 1 - Identifying Block Dependencies
	Slide 14: STEP 2 - Dependency-Driven Optimization Analysis
	Slide 15: STEP 3 - Code Optimization
	Slide 16: STEP 3 - Code Optimization
	Slide 17: STEP 3 - Code Optimization
	Slide 18: Experiment
	Slide 19: Experiment
	Slide 20: Experiment
	Slide 21: Experiment
	Slide 22: Experiment
	Slide 23: Experiment
	Slide 24: Experiment
	Slide 25: Experiment
	Slide 26: Conclusion
	Slide 27: Thanks

