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Floating-point Errors

• Some inputs may trigger significant FP errors
• Consider: 

𝑓 𝑥 =
tan 𝑥 − sin(𝑥)

𝑥3
lim
𝑥→0

𝑓 𝑥 = 0.5

double f(double x) {
double num = tan(x) – sin(x);
double den = x * x * x;
return num / den;

}

>>>  f(1e-7) // 64 bits result
0.5029258124322410

Accurate result //128 bits result
0.5000000000000012
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Error Detection is Crucial

Amplified by 
arithmetic 
operations

Large rounding 
errors!

• Large rounding errors may lead to catastrophic software failures
• Missile yaw [Skeel ’92]
• Stock trading disorder [Quinn ’83]
• Rocket launch failure [Lions ’96]

• FP errors are infamous problem in software development

Rounding 
errors
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Existing approaches

Static analysis
• Abstract interpretation
• Symbolic execution
• Interval arithmetic
• Affine arithmetic
• …

Goal: Approximate error bounds
- Over-approximated

Dynamic analysis
• Random search
• Binary guided random 

testing (BGRT)
• Atomic condition
• …

Goal: Find the maximal error
+ Real error
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Difficulties for guided searches

Guided search

Process
• Search space: 𝐷 = 𝑥, 𝑦 ∶ 𝑐1 ⋀ 𝑐2 ⋀ 𝑐3
• 𝑐1, 𝑐2, 𝑐3 are constraints of the two variables 𝑥

and 𝑦;
• The points within 𝑟 are input values that may 

trigger significant errors;
• 𝑝 is the input that triggers the maximal error.

Goal: Find the point 𝑝

Difficulties
• D may be complex and large
• 𝑟 and 𝑝 could both be many
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Error analysis using EIFFEL

Core idea of EIFFEL: Inferring error-inducing ranges instead of searching them in 𝐷

𝑓(𝑥), 𝐷      
𝑒. 𝑔: 𝑓 𝑥

=
1

𝑥 + 1 + 𝑥

Data set construction across 𝑅
• Using ULP error
• 𝑅 smaller than 𝐷

Data clustering
• Using DBSCAN 

algorithm

Curve derivation
• Using geometric 

progression formula

Extrapolation

Maximal 
error

Sampling in 𝑅
Sampling in 
ranges of 𝐷

𝑛𝑢𝑚 ≥ 3

𝑛𝑢𝑚 ≤ 2
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Data set construction

Two issues
• Determine 𝑅

• FP numbers are non-uniformly distributed
• [-1,1]   49.95% (double type)
• Dense near 0

⟹ Small interval as close to 0

• Deciding the number of input values 𝑠 to compute the 𝑈𝐿𝑃 errors, considers
• Performance ⟹𝑠 = 500,000 (0.17 seconds)

• Accurate error distribution ⟹ Uniformly distributed inputs 
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Boundary extraction and data clustering
• Boundary extraction

• Reduce the number of data points to accelerate clustering
Step 1: Gather every 𝑔 = 500 samples in one group
Step 2: Preserve the one that has the largest 𝑈𝐿𝑃 error in every group

• Data clustering
• Obtain the maximal error point for each 

cluster for fitting the function
• DBSCAN clustering algorithm
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Curve derivation and polynomial extrapolation
• Curve derivation

• Two challenges
• Each peak point is a 2D coordinate
• Extrapolated points may still follow the same 

distribution as that of the stars
• Solution

• 2D coordinates into 1D form
𝑥1, 𝑒𝑟𝑟𝑜𝑟1 , 𝑥2, 𝑒𝑟𝑟𝑜𝑟2 …(𝑥𝑖 , 𝑒𝑟𝑟𝑜𝑟𝑖) → 1, 𝑥1 , 2, 𝑥2 …(𝑖, 𝑥𝑖)

• Assume the 𝑥𝑖  form a geometric sequence or a 
geometric progression
𝑥𝑖 = 𝑥1 × 𝑞𝑖−1 𝑖 ≥ 1

The assumption is observed from extensive experiments
• Derive two curves

• Best fit for lower bound 𝑥𝑖 − 𝑟 and upper 
bound 𝑥𝑖 + 𝑟 that covers each 𝑥𝑖
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Curve derivation and polynomial extrapolation

• Polynomial extrapolation
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Error detection
• 𝑛𝑢𝑚 = 1 or 𝑛𝑢𝑚 = 2

• Return maximal error across 𝑅

• 𝑛𝑢𝑚 ≥ 3
• Consider the monotonicity

• 𝑒𝑟𝑟𝑜𝑟1 < 𝑒𝑟𝑟𝑜𝑟2 < ⋯

• 𝑒𝑟𝑟𝑜𝑟1 > 𝑒𝑟𝑟𝑜𝑟2 > ⋯

• Polynomial extrapolation

𝐷

𝑅′

𝐷

𝑅′

𝑛𝑢𝑚 = 1
stable

𝑛𝑢𝑚 = 1 𝑜𝑟 2
unstable
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Generalization for multi-variate scenarios
Similar to the single-variate case
• Two adaptations

• Project the multi-dimensional plot onto the variable space

Produce the variable coordinates of the errors

• Perform curve fitting along one dimension each time

Produce (hyper-)rectangular ranges but is still more effective than existing approaches

Error distribution Projection and clustering
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Evaluation

• Benchmarks: total 70 expressions
• 66 expressions are from FPBench
• 4 expressions are from real-life numerical programs

• 𝐷 is set using large but reasonable ranges

Total Benchmarks Single-variate Multi-variate

70 30 40
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Evaluation — Effectiveness

• Effectiveness
• Compared with the state-of-the-art techniques

Techniques Number of errors detected

EIFFEL 70

S3FP 43

ATOMU 30

ATOMU is only able to report errors for the 30 single-variate examples

S3FP returns empty results for 27 benchmarks
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Evaluation — Inferred input ranges
• Quantity

• Regina fails to infer input ranges at a large size of 𝐷
• EIFFEL obtains more input ranges than PSAT

• Quality
• Feed the inferred input ranges to Herbie

Benchmark
Number

EIFFEL PSAT

predatorPrey 15 2

sqrt_add 7 2

verhulst 12 2

nonlin1_test2 14 2

Intro-example 14 2

NMSEexample35 15 5

NMSEexample37 27 4

carbonGas 21 3

Improvement Original Herbie 
version

Average 3.35 bits

Maximal 53.3 bits
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Evaluation — Overhead 

Time overhead is between ATOMU and S3FP
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https://github.com/zuoyanzhang/EIFFEL
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